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Abstract—Demand for multimedia services, such as video
streaming over wireless networks, has grown dramatically in
recent years. The downlink transmission of multiple video se-
quences to multiple users over a shared resource-limited wireless
channel, however, is a daunting task. Among the many challenges
in this area are the time-varying channel conditions, limited
available resources, such as bandwidth and power, and the dif-
ferent transmission requirements of different video content. This
work takes into account the time-varying nature of the wireless
channels, as well as the importance of individual video packets, to
develop a cross-layer resource allocation and packet scheduling
scheme for multiuser video streaming over lossy wireless packet
access networks. Assuming that accurate channel feedback is not
available at the scheduler, random channel losses combined with
complex error concealment at the receiver make it impossible for
the scheduler to determine the actual distortion of the sequence
at the receiver. Therefore, the objective of the optimization is to
minimize the expected distortion of the received sequence, where
the expectation is calculated at the scheduler with respect to the
packet loss probability in the channel. The expected distortion is
used to order the packets in the transmission queue of each user,
and then gradients of the expected distortion are used to efficiently
allocate resources across users. Simulations show that the pro-
posed scheme performs significantly better than a conventional
content-independent scheme for video transmission.

Index Terms—Cross-layer design, error concealment,
H.264/AVC, HSDPA, video streaming, wireless packet scheduling.

I. INTRODUCTION

ECENT years have witnessed a drastic growth in de-

mand for multimedia services such as video streaming on
mobile terminals. The technology available for high data-rate
multimedia services to mobile clients over wireless networks is
rapidly improving with the emergence of third generation and
newer wireless standards such as HSDPA and IEEE 802.16 [1],
[2]. In most scenarios, multiple video sequences are transmitted
to multiple users simultaneously by sharing a resource-limited
wireless network. Transmitting multiple compressed video
programs over a wireless network in real time is considered
a challenging task due to several reasons. First, wireless
channels are impaired by deleterious effects such as fading
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and co-channel interference (CCI). Second, resources such as
bandwidth and power are limited in wireless networks and have
to be shared among multiple users. Furthermore, enormous
fluctuations in rates of compressed video programs due to the
differences in video content and intra/intercoding modes, can
complicate resource allocation.

Wireless resource allocation and scheduling approaches can
be categorized into two classes: i) time-division multiplexed
(TDM) systems, where a single user is transmitted to in each
time-slot, as in CDMA 1xEVDO, and ii) systems in which the
transmitter can simultaneously transmit to multiple users in each
time-slot. These systems employ a combination of TDM and an-
other multiplexing technique such as CDMA or OFDM. In this
article, we focus on the second class of systems where in addi-
tion to deciding which users to schedule, the available physical
layer resources (bandwidth and power) are optimally allocated
to the users.

Traditionally, cross-layer scheduling and resource allocation
methods exploit the time varying nature of the wireless channel
to maximize the throughput of the network while maintaining
fairness across multiple users [3]-[5]. These methods rely on
the multiuser diversity gain achieved by selectively allocating a
majority of the available resources to users with good channel
quality who can support higher data rates. In [6], the authors dis-
cuss the implementation of gradient-based scheduling schemes.
Optimization over the available resources is performed at each
time-slot while taking into account the fading state of each user
at that time. The utility function used in [6] is defined as ei-
ther a function of each user’s current average throughput, or of
each user’s queue length or delay of the head-ofline packet. A
queue-length based utility can be employed for video streaming
applications where the delay constraints are stringent.

Video quality, however, is not simply a function of the data
throughput but is also determined by the video content because
of inefficiencies in video compression, as well as the potential
for spatial and temporal error concealment of lost/missing data
[7]. Furthermore, an important requirement in video streaming
is that the video will be played back in real-time at the de-
coder, and, therefore, the appropriate video packets need to be
available at the decoder in time for playback. Therefore, any
packet that remains in the transmission queue after its decoding
time has expired will be discarded prior to transmission [7],
[8]. Consequently, in order to efficiently utilize the limited re-
sources of the wireless networks for video delivery, a content-
aware scheduling technique must be employed. Methods that
have been specifically designed for video applications have con-
ventionally focused on satisfying the delay constraint require-
ments inherent to the system [9]-[11]. Received video quality
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in these approaches is only measured as a function of delay
or packet loss rate. In [8], a concept of incrementally additive
distortion among video packets, introduced in [12], is used to
determine the importance of video packets. Scheduling across
users, however, is performed using conventional, content-inde-
pendent techniques. In [7] and [13], we have developed a con-
tent-based utility function that can be integrated into the utility-
based framework of [6] to provide a content-aware scheduling
technique. The key to deriving this utility function is to appro-
priately prioritize the video packets according to their “impor-
tance.” This importance is measured in terms of the distortion of
the received video signal, taking into account the concealment
of the lost packets. The approach in [7], however, assumes that
perfect channel information is available at the scheduler and,
therefore, uses a zero-outage capacity model to determine the
achievable data rates. Hence, the losses considered in [7] and
[13] occur only when packets are not transmitted on time due to
their scheduling priority, and as a result all losses are known to
the transmitter. In the current work, we consider a realistic sce-
nario in which only an imperfect estimate of the channel state
is available at the transmitter. In this case, an outage capacity
model must be used to determine a probability of channel loss
based on the estimated channel state, the allocated resources,
and the transmission rate [14]. We still assume that the error
concealment strategy utilized by the decoder is also known to
the transmitter and, therefore, is employed by the scheduler to
achieve better performance. Random channel losses combined
with complex error concealment at the decoder make it im-
possible for the scheduler to determine the actual distortion of
the sequence at the receiver. Instead, the scheduler employs a
per-pixel decoder distortion estimation to determine its sched-
uling decisions. Efficient methods exist for recursively calcu-
lating the expected distortion at the receiver [15], [16]. The main
contribution of this paper is to provide a method for calculating a
prioritized set of video packets in which the packets are ordered
by their contribution towards reducing the expected distortion
of the received video. Using this scheme, we jointly optimize
the resource allocation (power and bandwidth) and transmission
rates assigned to each user to reduce the end-to-end distortion
estimate over all users in the system.

The rest of the paper is organized as follows. In Section II, we
provide a brief overview of the system. In Section III, we for-
mulate the problem by describing the error concealment tech-
nique, the proposed packet ordering technique, and the wireless
channel model. The resource allocation problem is formalized
in Section IV and a simplified solution to the problem is pro-
posed. Experimental results are shown in Section V and finally
conclusions are drawn in Section VI.

II. SYSTEM OVERVIEW

Fig. 1 depicts a generic framework for multiuser video
transmission over wireless networks, which consists of the
video server/encoder, backbone network, scheduler, and the
receivers. Captured video sequences are first compressed by the
video encoder and recorded in a media server. We assume that
each sequence is packetized into multiple data units. Each data
unit/packet is independently decodable and represents a slice
of the video. Note that, although in terms of decoder operation,
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Fig. 1. Block diagram of multiuser downlink video streaming system.

each slice is independently decodable, in reality, most frames
of a compressed sequence are inter frames, in which MBs
may be dependent on macroblocks of previous frames through
motion prediction. Once a video stream is requested by a client,
the packets are transmitted over a backbone network (assumed
lossless) to the scheduler at a base station servicing multiple
clients. In addition to Channel State Information (CSI) available
through channel feedback, the scheduler uses three features of
each packet to allocate resources across users. These features,
for each packet m of each client 7, are the utility gained due
to the transmission of the packet, the size of the packet in bits,
R; m, and the decoding deadline for the packet, 7; ,,, which
represents the delay constraint in order to reach the receiver
in time for playback. This decoding deadline is determined by
the frame rate of the video being streamed. We assume that
all the packets in a frame have the same decoding deadline.
Any packet left in the transmission queue after its decoding
deadline has expired is discarded since it has lost its value to
the decoder. In other words, there are a specific number of time
slots available for transmission of each frame depending on the
streaming frame rate, and after those time slots have elapsed, no
further packet from the current frame is transmissible. Hence,
only packets that arrive intact and on time at the receiver are
decoded by the decoder. Multiple retransmissions of a packet
based on feedback are allowed as long as the retransmissions
occur prior to the decoding deadline. In this scenario, the lost
packet is reinserted into the transmission queue and re-ordered
based on the current state of the queue. Errors introduced
to the decoded image are due to the loss of packets in the
wireless channel, or due to the discarding of packets from the
transmission queue. These errors are concealed using an error
concealment technique.

III. PACKET ORDERING WITH EXPECTED DISTORTION

Careful packetization of the video data is necessary to ensure
the optimal tradeoff between channel utilization and error ro-
bustness. In addition, since we require each packet to be decod-
able by itself, small packet sizes will degrade the source com-
pression efficiency due to limited prediction. On the other hand,
large packet sizes result in greater packet loss probability and
ineffective concealment in case of a packet loss. Note that error
concealment in this work not only helps error hiding at the de-
coder, but it also plays an important role in packet ordering and
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resource allocation. Based on the above discussion, itis assumed
in this work that a slice consists of a row of macroblocks and is
directly packetized into a transport packet.

The video data packets, then, are ordered in the scheduler
buffer such that the most important packets are first served and,
therefore, have a greater likelihood of being received at the de-
coder. Packet prioritization and resource allocation in this work
is performed one frame at a time. Nonetheless, this scheme can
potentially be improved by optimizing the scheduling and re-
source allocation over multiple buffered frames. Such a scheme,
however, would lead to a considerably higher computational
complexity. Using an outage capacity model, the probability of
loss of each transmitted packet can be estimated based on the
imperfect channel state information available at the scheduler.
The error concealment technique employed at the decoder is as-
sumed to be known by the scheduler. The rest of this section de-
scribes a method for ordering each user’s video packets within
each user based on the contribution of the packets towards re-
ducing the expected distortion of the sequence. Since the same
technique is used for all users, the user index, ¢, is omitted during
this discussion.

A. Error Concealment and the Calculation of Expected
Distortion

Due to channel losses, we use the expected end-to-end distor-
tion to evaluate video quality. Three factors can be identified as
affecting the end-to-end distortion: the source behavior (quan-
tization and packetization), the channel characteristics, and the
receiver behavior (error concealment) [17], [18].

A robust error concealment technique helps avoid significant
visible errors in the reconstructed frames at the decoder. Cur-
rently, there does not exist a standardized error concealment
scheme for wireless communication. This work, however, as-
sumes that the error concealment scheme is known at both the
transmitter and the decoder. Given the importance of error con-
cealment in determining the final decoded quality of the trans-
mitted video, a protocol in which the error concealment scheme
is known to both the scheduler and decoder can potentially be
highly beneficial in providing significant performance improve-
ments through content-aware packet scheduling schemes. In our
previous work [7], we have examined this issue in greater detail.
In this work, we consider a simple but efficient temporal con-
cealment scheme: a lost macroblock (MB) is concealed using
the median motion vector candidate of its received neighboring
MBs (the top-left, top, and top-right). The candidate motion
vector of a MB is defined as the median motion vector of all
4 x 4 blocks in the MB. If the preceding row of MBs is also
lost, then the MB in the same spatial location in the previously
reconstructed frame is used to conceal the current loss. Note that
this concealment strategy is employed both in the scheduler op-
timization framework and at the decoder.

Given the dependencies introduced by the error concealment
scheme, and assuming dependent packet cases, the expected dis-
tortion of the m'" slice E{D,,}, can be calculated at the en-
coder as

E{Dp} =1 —€en)E{Drm}+em(l —€m—1)E{DLrm}
+€m€m—1E{DLL,m} (1)

1665

where ¢, is the loss probability of the mth packet, E{Dg ., }
is the expected distortion of the mth packet if received, and
E{Drrm} and E{Drr n} are respectively the expected dis-
tortion of the lost mth packet after concealment when packet
(m — 1) is received or lost. Note that in this equation €_; is al-
ways equal to 1.0 since there is no packet before the first packet
(m = 0). Assuming an additive distortion measure, the ex-
pected distortion of a frame of M packets, denoted by E{D},
can be written as

E{D} = Z E{D,,}. )

This distortion measurement is based on a per pixel recursive
algorithm called ROPE, which was originally proposed in [15]
as an efficient means to accurately estimate end-to-end distor-
tion at the encoder.

The accuracy of ROPE in end-to-end distortion estimation
is attributed to its ability to calculate the first and second mo-
ments of the decoder reconstructed pixels. Sub-pixel predic-
tion employed in H.264/AVC, however, involves interpolation
of neighboring pixels [19], which gives rise to cross-correlation
terms in the second moment calculation. To deal with the cross
correlation terms in our experiments, the cross correlation ap-
proximation method introduced in [16] is used to calculate the
end-to-end expected distortion. In this model, the correlation co-
efficient between two points X and Y is assumed to be approx-
imated by

pxy = exp(—a-dxy) 3)

where dxy is the Euclidean distance between two decoder re-
constructed pixels X and Y, and « is a constant, whose value
is experimentally obtained from training data (typically 0.04 to
0.06).

In addition to pixel cross-correlations, an important, often
neglected, issue in per pixel distortion estimation, is that
of rounding errors. A rounding operation is usually em-
ployed whenever a filtering or averaging operation results in a
floating-point pixel value. In H.264/AVC, rounding operations
are encountered in sub-pixel prediction, weighted prediction,
in-loop filtering, etc. Rounding can be viewed as a special case
of uniform quantization with a quantization step size of one
unit, and in which the quantized value is the nearest integer. In
[16], a rounding error compensation (REC) technique based
on quantization theory (QT-based) is proposed to deal with
rounding errors in distortion estimations.

B. Packet Ordering

In this section, we present a rate-constrained scheme to order
the packets in the transmission buffer of each user based on
the contribution of each packet to the end-to-end expected dis-
tortion. There are multiple challenges in ordering packets in a
lossy environment in conjunction with a complex error conceal-
ment strategy. First, because error concealment (EC) introduces
inter packet dependencies, the ordering process cannot be done
greedily and, therefore, all possible packet loss combinations
have to be taken into account. This is because the selection of
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the first packet causes the existing symmetry in the packet loca-
tions to break since lost packets can be better concealed if they
are close to a received packet. Note that the “concealability” of a
slice, strongly depends on its motion correlation with the neigh-
boring slice as well as the reliability of the neighboring slice,
i.e., the loss probability of the packet in which it belongs. In ad-
dition, the expected distortion of a frame, as discussed earlier,
depends on the loss probability of the consisting packets, which
in general, could be different for each packet due to the channel
fading process.

To overcome the aforementioned challenges, we propose a
rate-constrained scheme to order the video data packets. Let
tm € {0,1} denote whether packet m is transmitted (p,, =
1) or not (g, = 0), during the current transmission time-
slot. In order to determine the transmission policy vector p =
(p1, p2, - - -, puar ), a Lagrangian cost function is introduced. The
Lagrangian expresses the problem of minimizing end-to-end ex-
pected distortion of the frame given a rate constraint as

M
L(p,€A) =Y E{Drn(ttm €mo fian—1, €m—1)}
m=1
+ AR (pm) (D)
where € = (€1, ¢€2,...,€epr) denotes the vector of packet loss

probabilities, ¢,,, of each packet m, and A > 0 is a real pa-
rameter determining the transmission cost. R, (um) denotes
the number of bits transmitted for packet m, which will be 0,
if p,,, = 0, and the length of the packet, if y,, = 1.

For a fixed €, let the mode vector p* be the one that minimizes
the cost function, i.e.,

min

L, €N).
i, (B, € )

w(\€) = arg 5)

Given the error concealment technique discussed above which
limits the dependencies between packets, the above optimiza-
tion can be performed efficiently using a dynamic program-
ming (DP) technique. The DP can be viewed as a shortest path
problem in a trellis, where each stage corresponds to the mode
(SEND or SKIP) selection for a given packet with the com-
plexity equal to 2 x 2 x M.
The frame rate R(u) is obtained by

R(p) = Z R (pm)- (6)

Note that the solution in (5) is optimal in the sense that, if a rate
constraint R, corresponds to )\, then the total expected distortion
E{D} is minimum for all combinations of transmission options
with bit rate less than or equal to ...

An increase in the value of the Lagrange parameter, A, resem-
bles a rise in the cost of the transmission bits. Consequently,
the frame rate R(u*) monotonically decreases as A increases.
In other words, fewer packets will be selected in p* for trans-
mission. Furthermore, there exists some Apna.x > 0 such that
pk, = Oforallm € [1,2,..., M], and assuming that all packets
have some contribution towards reducing the expected distor-
tion, there exists some Api, > 0 such that p);, = 1 for all m.

IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 17, NO. 9, SEPTEMBER 2008

Therefore, the threshold, \,, at which the mode of a packet m
switches from ., = 0 to ), = 1 can be obtained by sweeping
A from Apax t0 Apmin. Finally, the order in which each packet
is added to the transmission queue is efficiently determined by
the threshold A,,, i.e., packets with larger values of A, corre-
spond to more important packets in terms of reducing the ex-
pected distortion and, therefore, are transmitted first. Note that
the thresholds depend on the probability of loss, €, as well, and
cannot be known a priori. In practice, a A > Ay ax is found first
based on a rough estimate of \p,,x, then the thresholds A, are
obtained utilizing a bilinear search.

IV. RESOURCE ALLOCATION

A. Introduction

In the previous section, we have described the proposed
scheme for reordering packets within the transmission queue of
each user. The current section discusses the resource allocation
across users that will determine the transmission rates assigned
to each user, and thereby the number of transmissible packets
from each user’s transmission queue.

As in [7], we consider a scheme, such as HSDPA, where a
combination of TDM and CDMA is used for resource alloca-
tion. In this scheme, at each transmission timeslot, ¢, the sched-
uler can decide on the number of spreading codes, n;, (assumed
to be orthogonal) and the transmission power, p;, that can be
used to transmit to a given user, ¢. Note that n; = 0 implies
that user ¢ is not scheduled for transmission at that time slot (the
time-slot index remains the same throughout this section and
is omitted for simplicity). The maximum number of spreading
codes that can be handled by each user is determined by the
user’s mobile device. However, the total number of spreading
codes, IV, that can be allocated to all users, is limited by the spe-
cific standard (15 for HSDPA). The total power, P, that can be
used by the base station is also limited in order to restrict the pos-
sibility of interference across neighboring cells. In the case that
the exact channel state at each time-slot is known to the sched-
uler, the achievable error-free transmission rate, r;, for each user
can be precisely calculated given the allocated resources, n; and
p; [7]. In the case, when the exact channel state is not known,
however, and only an estimate of the channel state is available,
it is also necessary to consider the probability of loss in the
channel due to random channel fading that may occur during
the transmission. Depending on the assumed wireless channel
model, the probability of loss can be calculated, using an outage
probability formulation [14], as a function of the assigned trans-
mission power, bandwidth, and transmission rate.

B. Outage Probability

Since the concept of outage probability is discussed in detail
in [14], this section will simply summarize its application to the
current work. Again, the time index, ¢ will be omitted during this
discussion as the outage probability will be calculated at each
transmission time-slot. Also, note that ¢; refers to the probability
of loss of the transmission to user ¢ in the current time-slot. All
packets, m;, transmitted to user + during the current time-slot
will have a packet loss probability, €,,,, equal to €;. Using the
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Fig. 2. Block diagram of the proposed scheduler.

model derived in [14], the probability of loss of a transmission
to user ¢ can be written as

e; = Prob [niB log <1 + pz_hz> < ri|ez}
ni

= Prob [hi < E (2r_” — 1) |ei]
= zle; (hb|ez) (7)

where B denotes the maximum symbol rate per code, h; denotes
the instantaneous channel fading state (SINR per unit power)
at that time-slot, and F, ., denotes the cumulative probability
density function of the instantaneous channel fading state con-
ditioned on the observed channel estimate, e;. It is clear from
(7) that the probability of loss, €;, depends on four factors: the
allocated resources (n;,p;), the estimated channel SINR (e;),
the assigned transmission rate (7;), and the conditional cumula-
tive density function (cdf) given by the wireless channel model

(Fz\ei>'
C. Wireless Channel Model

This work assumes that only partial (imperfect) channel state
information is available at the scheduler/transmitter. Errors in
the channel estimate can arise from the delay in the feedback
channel combined with Doppler spread and quantization errors.
It is possible to empirically determine the conditional cdf of the
channel SINR conditioned on the channel estimate and the feed-
back delay using channel measurements. For the purposes of
this work, we employ a Nakagami-m channel model which ex-
hibits similar patterns to HSDPA RF channel traces obtained
from Motorola, Inc. In this model, the channel SINR can be
modeled as a gamma distribution with mean at the channel es-
timate, e;. The cumulative probability density function can be

written as
h;
gl (m s )

I'(m)

Fz|ez(h’l) = (8)

where m is a shape parameter determined by the order, m, of
the distribution, () denotes the incomplete gamma function,

and I'(m) denotes the gamma function of order m. Note that for
a fixed order, m, the variance of the Nakagami-m distribution
increases with increasing mean (i.e., channel estimate).

D. Problem Formulation

Given the packet ordering scheme and method for calculating
the loss probability described above, the scheduler jointly opti-
mizes the rate assignment, r = (71,72, ...,k ), where K is the
number of users, the power assignment, p = (p1,p2, .- ., PK),
and the spreading code assignment, n = (nq,ne,...,nk), in
order to minimize the total expected distortion in the system at
each time slot. For a given rate and packet loss probability, let
the expected distortion of the frame currently being transmitted
to user ¢ given the packet ordering specified in Section III-B
be E{D;(r;,€;)}, obtained as in (2). Then, the optimization
problem can be written as

K
min E{D;|r;,e;(n;,pi,7i,€; 9
g D Bt piori el ©)
such that
K
0<) ni<N,0<n <N;, Vi (10)
i=1
K
0<Y pi<P Vi (11)
=1
and
0<% <8 vi (12)
n;

where S”i is the maximum SINR constraint [6] and all other pa-
rameters here are previously defined. In principle, a nonlinear
optimization scheme can be used to find the solution to (9). In
practice, however, the solution can be highly complex, as an an-
alytical form for £{ D}, which will satisfy different video con-
tent and channel conditions, cannot be easily derived. Therefore,
this paper uses a two-step approach to simplify the solution to
the problem.

Our solution is based on a few observations. One observation
is that the packet ordering arrived at by the technique described
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TABLE [
SYSTEM PARAMETERS USED IN SIMULATIONS
N|N | P S;
15| 5 | 25W | 1.8dB

in Section IIL.B is not overly sensitive to the probability of loss
of each packet. Another observation is that, due to the con-
straints on transmission power and bandwidth imposed by the
system as well as the limited length of a time-slot, the number
of bits that can be transmitted to a user at any given transmis-
sion opportunity is limited. Therefore, as a first step, we fix the
probability of loss of each packet in the transmission queue of
each user to a reasonable value, denoted by ;. Then, we use a
linear approximation to F{D;[r;,;]} over the limited number
of bits that might be transmitted. Now, given, the probability of
loss, €;, and channel estimate, e;, the rate assignment, r;, must
be a function of n; and p; as specified in (7). Therefore, for the
fixed €;, the problem of determining

OE{D;[ri(ni,pi, &), €}
87“1‘

K

ri(ni, pi, &) (13)
can be solved subject to the constraints in (10), (11), and (12)
where, 9/0r; denotes the partial derivative with respect to
r;. Note that the gradient of F{D;} with respect to r; for a
fixed probability of loss can be numerically calculated using
the methods described in Section III-B, and the formulation
described in [7]. The solution to the type of problem in (13) can
be found in [6].

For the second step, it can be observed from (7) that when n;
and p; are fixed, then ¢; is a function of only r; (i.e., €; increases
as r; increases). As a consequence of this relationship, when r;
is small, increasing 7; leads to a lower E{D;} as it results in a
larger number of transmitted bits. As r; increases, however, ¢;
also increases leading to a higher E{D;} as the transmitted bits
are no longer reliable. Therefore, E{D;} is typically a convex
function of r;. Since there is no multiuser constraint on the r;
assignment for a given user, the following convex optimization
problem can then be solved separately for each user 7 with a
simple 1-D line search to find the optimal value of r; which
leads to the minimum expected distortion for user ¢

min E{D;[r;, e;(n;,p;, i, €i)]} (14)
where n; and p; are the values of n; and p; found by solving
(13). Fig. 2 demonstrates these procedures.

V. EXPERIMENTAL RESULTS

Seven video sequences with varied content (foreman, car-
phone, mother and daughter, news, hall monitor, silent, and
stefan), in QCIF (176 x 144) format were used at a rate of 30 fps
for the simulations. Therefore, the packets of each frame had
a total of 33 ms to be transmitted on time to be played back at
the decoder. The video sequences were encoded in H.264 (JVT
reference software, JM 10.2 [20]) at variable bit rates (VBR) to
obtain a decoded PSNR of 35 dB at each frame. Nonetheless,
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Fig. 3. Average received PSNR. (a) average quality for each user, (b) average
quality over all users.

our optimization framework does not depend on the encoding
configuration, and can equally apply to CBR encoding. All
frames except the first one were encoded as P frames. To reduce
error propagation due to packet losses, 15 random I MBs were
inserted into each frame, and constrained intra prediction was
used at the encoder. The frames were packetized such that each
slice contained one row of MBs, which enabled a good balance
between error robustness, and compression efficiency.

The wireless network was modeled as an HSDPA system. The
system parameters used in the simulations are shown in Table L.
HSDPA provides 2 ms transmission time slots. A Nakagami
channel with shaping parameter m = 10 is considered for the
channel model.

We allowed larger application layer packets to be fragmented
into smaller packets at the MAC layer prior to scheduling. It
was assumed that all fragments of an application layer packet
must be received at the decoder in order for it to be correctly
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Fig. 4. Variance of received PSNR.

decoded. An ACK/NACK feedback for transmitted packet frag-
ments was assumed to be available with a feedback delay of
10 ms. Therefore, if a NACK is received for a fragment of a
transmitted application layer packet whose decoding deadline
has not yet expired, then the packet will be reinserted into the
transmission queue and re-ordered based on the current state of
the queue.

The simulations compare four different methods for deter-
mining the resource allocation. They are as follows.

1) Expected Distortion Gradient—This is the proposed con-

tent-aware method as described in Section IV.

2) Expected Distortion Gradient with Fixed Loss—In this
method, packet ordering is performed using the expected
distortion as specified in Section III.B, but in the resource
allocation, the probability of loss, ¢; is fixed for all users.
Essentially, this method eliminates the second step of the
solution in Section IV and, thus, is less computationally
complex than the first.

3) Queue Length—This method is not content-aware and
uses the queue lengths at each user’s transmission buffer
[21] to determine the resource allocation. As in the second
method, this also assumes a fixed ¢; for all users. The main
difference between this method and the second is that in
this method, the packets are not ordered according to their
expected distortion gradients.

4) Max C/I—This method takes advantage of the variations in
the radio channel conditions and always chooses to serve
the user experiencing the best channel condition, maxi-
mizing the system throughput. The same loss probability
of method 2 and 3 is also used here.

Fig. 3 shows the average quality of the received video after
scheduling and transmission over a packet lossy network, using
the four different schemes. In Fig. 3(a), the results are aver-
aged over each video sequence and also 50 channel realizations.
Fig. 3(b) shows the average quality at each frame averaged over
all the users and channel realizations. For the fixed loss schemes,
g; 1s fixed at the average loss probability obtained from the first
scheme which is about 0.1 in our simulation setup. The figures
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0.35

show that the proposed content-dependent schemes significantly
outperform the queue-length dependent and max C/I scheme in
terms of average received quality.

Fig. 4 shows the variance of quality at each video frame across
all users and channel realizations. The max C/I scheme shows
a significantly larger variance across users than the others. Our
proposed methods on the other hand, exhibit the lowest vari-
ance across users. These results can be attributed partly to the
packet ordering and also to the fact that the queue length de-
pendent scheme does not consider the concealability of video
packets when allocating resources across users. Therefore, as-
suming two users have equal queue lengths, the user whose
video packets are difficult to conceal if lost, will not be given
priority over the other user.

In the previous figures we chose the fixed loss probability
for schemes 2, 3, and 4 to match the average loss probability
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in scheme 1. Next, we study how sensitive these schemes are
to the value of €;. Fig. 5 shows the variation in the average re-
ceived PSNR as the value of ¢; is varied for the two schemes
that use a fixed probability of loss. Fig. 5(a) shows the results
for the content-aware scheme, and it is apparent that the overall
video quality remains within a 0.5 dB range over a large range
of e. This result shows that the choice of € does not significantly
affect the performance of the system for the content-aware case.
Fig. 5(b) shows the results for the queue length scheme. In this
case, the choice of ¢ has a greater impact on the average received
PSNR.

VI. CONCLUSION

This work introduces a content-aware multiuser resource al-
location and packet scheduling scheme that can be used in wire-
less networks where only imperfect channel state information
is available at the scheduler. The scheme works by jointly op-
timizing the resource allocation and transmission rate alloca-
tion in a content-aware manner while also prioritizing video
packets in the transmission queue. The content dependent tech-
niques shown in this paper significantly outperform a conven-
tional content-independent scheduling scheme. While results
comparing CBR encoded content are not shown in this paper,
with CBR encoded content, potentially greater improvements
can be expected with a content dependent scheme because, un-
less an ideal rate control scheme is used, the bit allocations for
the video sequences will be less correlated with the final de-
coded video quality. A simplified content dependent technique
that fixes the probability of loss is also shown. Although the
scheme with fixed probability of loss can achieve similar re-
sults to one that optimizes the probability of loss, it requires
tuning of the probability of loss parameter, whose optimal value
cannot be known without knowledge of the video content and
channel conditions.
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