
THREE-DIMENSIONAL NUMERICAL STUDY OF FLAMES SUPPORTED BY A
ROTATING BURNER

BY

KISHWAR N. HOSSAIN

B.S., Lafayette College, 2000
M.S., University of Illinois at Urbana-Champaign, 2003

DISSERTATION

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Aerospace Engineering

in the Graduate College of the
University of Illinois at Urbana-Champaign, 2008

Urbana, Illinois

Doctoral Committee:

Adjunct Professor Thomas Jackson, Chair
Professor John Buckmaster
Associate Professor Gregory Elliott
Assistant Professor Dimitrios Kyritsis

Abstract

In this study non-uniform methane diffusion flames, formed from a porous plug burner

spinning in quiescent air are investigated numerically in a three-dimensional context. Flames

are simulated for Damköhler numbers on the upper branch of the S-response curve close to the

extinction point. Multi-dimensional instabilities appear at these near extinction Damköhler

numbers, as observed in experimental studies of flames sustained by a rotating fuel disk [1]

and by a rotating porous burner[2], [3].

Simulation results from the constant density and constant viscosity model suggest that

the non-uniform flames are a result of thermodiffusional instabilities and are a function of

the Damköhler number. Non-uniform flames simulated in this study include flame holes,

single armed spirals and double armed spirals. The flame holes have stationary edges and

the radius of these holes is found to increase as the Damköhler number is lowered. The

single and double spirals have edges that rotate about the axis of the burner. It is found

that the velocity of the single spiral relative to the flow is considerably higher than that of

the double spiral. It is also found that the shapes of the spirals are affected by the velocity

vectors and by interactions between distinct spiral arms. Analyses of the scalar dissipation

and cross-scalar dissipation rates of these flames show that the flames are primarily diffusion

flames with some premixing near the edges.

ii

Factors, other than the Damköhler number, that are found to significantly affect the

stability of the spinning porous plug burner include the mixture strength and the exit velocity

at the burner surface. The range of Damköhler number within which the system exhibits

non-uniform behaviour is larger at higher values of exit velocity and lower values of mixture

strength.

iii

Acknowledgments

I would like to express my gratitude to all those who have contributed to the completion of

this thesis. Firstly, I would like to thank my husband, Peshala, for his unrelenting support,

encouragement, love and affection. In addition, I would like to thank my parents and my

brother for their love and patience. I would also like to thank my father-in-law and mother-

in-law for their encouragement.

I wish to acknowledge the continued guidance of my advisors, Professor Thomas L. Jack-

son and Professor John D. Buckmaster. I am forever indebted to them for providing me with

the opportunity to pursue a Ph.D. and I will treasure the knowledge that I have gained from

working with them. I would also like to thank Professor Gregory Elliott of the Department

of Aerospace Engineering and Professor Dimitrios Kyritsis of the Department of Mechanical

Science and Engineering for serving on my thesis committee.

I would like to acknowledge the support of this work by the Center for Simulation of

Advanced Rockets (CSAR) at the University of Illinois which is supported by the U.S.

Department of Energy under contract number B523819, as a part of its Advanced Simulation

and Computing Program (ASC). I would also like to acknowledge the support of Computer

Sciences and Engineering (CSE) and the support of AFOSR contract number AF FA9550-06-

1-0332, A. Nachman, program manager, for computer time on the Air Force cluster located

iv

at Illinois.

I would like to acknowledge the support of the Champaign Simulation Center, CAT Inc.,

through Enterprise Works. I would particularly like to thank Mr. Walt Lohmann, Dr.

Christopher Ha and Dr. One-Chul Lee from the Champaign Simulation Center.

I would like to give special thanks to Staci Tankersley of AE and Jodi Gritten-Dorsett of

CSAR for their continued help. In addition, I would like to thank Diane Jeffers and Kendra

Lindsey of AE and Sheryl Hembrey of CSAR. I am also indebted to the Turing support staff,

especially Michael Campbell, for all their help with queuing issues on the cluster. I would

also like to thank Dr. Luca Massa for his help.

I owe many thanks to Bill Mason, Bill and Kris Hartmann, Jennifer and Filip Rysanek,

Jason and Cindy Kamphaus, Chet Hammill, Jim Wrzosek and many others for their friend-

ship and support. Finally, I would like to add that I will always cherish the time I have spent

at the University, and for that I thank all those who have contributed to this memorable

experience.

v

Table of Contents

List of Tables . viii

List of Figures . ix

List of Symbols . xii

Chapter 1 Introduction . 1

Chapter 2 Governing Equations and Boundary Conditions 9
2.1 The Constant-Density Model . 13
2.2 The Porous Plug Burner . 14
2.3 Non-dimensional Equations . 17

Chapter 3 Numerical Method . 20
3.1 One-Dimensional Validation . 23
3.2 Parallel Implementation . 28
3.3 Solution Methodology . 31
3.4 Grid Convergence . 32

Chapter 4 Results . 35
4.1 The Burke-Schumann Flame Sheet . 35
4.2 Non-uniform Flames at a Mixture Strength Value of 2.0 39
4.3 Flame Hole . 45

4.3.1 Effect of Damköhler Number on Flame Hole Radius 48
4.4 Single Spiral . 56

4.4.1 Comparison with Experiment . 61
4.4.2 Effect of Damköhler Number on the Single Spiral 62

4.5 Double Spiral . 64
4.6 Non-uniform Flames at a Mixture Strength Value of 5.0 67
4.7 Effect of Parameters of Study on the Stability of the System 71
4.8 Scalar and Cross Scalar Dissipation Rates of the Non-uniform Flames 73
4.9 Conclusion . 79

Appendix A Nondimensionalizing the Governing Equations 80

vi

Appendix B Code Verification . 86
B.0.1 Grid Refinement Study . 86
B.0.2 Benchmark Studies . 88

Appendix C Normal Mode Analysis . 94

Appendix D Eigenvalue Problem: Separation of Variables 99

Appendix E Source Code . 104

References . 171

Curriculum Vitae . 174

vii

List of Tables

3.1 Coefficients for optimal (5, 4), 2N -storage RK scheme, solution 3 of Carpenter
and Kennedy [4] . 22

3.2 Comparison of the sum of reaction rates . 32

4.1 Damköhler number and flame hole radii . 48
4.2 Effect of Parameters of Study on D∗. 72

C.1 Transition Damköhler Numbers from the eigenvalue problem and from 3-D
simulations for k = 1 to k = 7 . 98

viii

List of Figures

1.1 Sketch of a diffusion flame supported by a rotating burner 3
1.2 The S-shaped sesponse curve . 6

3.1 Sketch describing the one-dimensional diffusion problem used for code valida-
tion [5] . 23

3.2 Leading two eigenvalues for one-dimensional code validation problem for Le =
2.0, Ta = 4.0, P e = 0.0, T0 = 0.05 [5] . 25

3.3 Transient solution for one-dimensional code validation problem Le = 2.0, P e =
0.0, Ta = 4.0, T0 = 0.05 [5] . 25

3.4 Steady state solutions for Le = 2.0, P e = 0.0, Ta = 4.0, T0 = 0.05, a.
D = 1.955e6, b. D = 2.050e6 . 26

3.5 Transient solution for Le = 2.0, P e = 0.0, Ta = 4.0, T0 = 0.05, D = 1.955e6 27
3.6 Transient solution for Le = 2.0, P e = 0.0, Ta = 4.0, T0 = 0.05, D = 2.050e6 27
3.7 Speedup as a function of the problem size 29
3.8 Efficiency as a function of the number of processors 29
3.9 Scalability of the parallel code . 30
3.10 Temperature and reaction rate contours for a 32 x 32 x 32 grid 33
3.11 Temperature and reaction rate contours for a 64 x 64 x 64 grid 33
3.12 Temperature and reaction rate contours for a 96 x 96 x 96 grid 33
3.13 Temperature and reaction rate contours for a 128 x 128 x 64 grid 34

4.1 Burke-Schumann solution, Schvab-Zeldovich variables 37
4.2 Burke-Schumann solution, temperature and species profiles 38
4.3 Non-dimensional velocities . 40
4.4 S-shaped response . 40
4.5 Temperature contour of a flame hole for φ = 2.0, Yo∞ = 0.2, H0 = 0.1,

Ts = 1.0, β = 25, Ze = 40 and D = 1.96 . 41
4.6 Temperature contour of a flame hole for φ = 2.0, Yo∞ = 0.2, H0 = 0.1,

Ts = 1.0, β = 25, Ze = 40 and D = 1.96 . 41
4.7 Temperature contour of a single spiral for φ = 2.0, Yo∞ = 0.2, H0 = 0.1,

Ts = 1.0, β = 25, Ze = 40 and D = 1.91 . 42
4.8 Temperature contour of a single spiral for φ = 2.0, Yo∞ = 0.2, H0 = 0.1,

Ts = 1.0, β = 25, Ze = 5.43 and D = 1.91 . 42
4.9 Temperature contour of a double spiral for φ = 2.0, Yo∞ = 0.2, H0 = 0.1,

Ts = 1.0, β = 25, Ze = 40 and D = 1.85 . 43

ix

4.10 Temperature contour of a double spiral for φ = 2.0, Yo∞ = 0.2, H0 = 0.1,
Ts = 1.0, β = 25, Ze = 5.43 and D = 1.85 . 43

4.11 Temperature and species contours of a flame hole for φ = 2.0, Yo∞ = 0.2,
H0 = 0.1, Ts = 1.0, β = 25, Ze = 5.43 and D = 1.96 45

4.12 Temperature and species contours of a flame hole for φ = 2.0, Yo∞ = 0.2,
H0 = 0.1, Ts = 1.0, β = 25, Ze = 5.43 and D = 1.96 46

4.13 Radial temperature profile at θ = 0rad. 47
4.14 Flame hole radius as a function of Damköhler number 49
4.15 Temperature contours of the flame hole in the xy and the rz planes at D = 1.96 50
4.16 Temperature contours of the flame hole in the xy and the rz planes at D = 1.955 51
4.17 Temperature contours of the flame hole in the xy and the rz planes at D = 1.95 51
4.18 Temperature contours of the flame hole in the xy and the rz planes at D = 1.945 52
4.19 Temperature contours of the flame hole in the xy and the rz planes at D = 1.94 52
4.20 Reaction rate contours at D=1.96 . 53
4.21 Reaction rate contours at D=1.955 . 53
4.22 Reaction rate contours at D=1.95 . 54
4.23 Reaction rate contours at D=1.945 . 54
4.24 Reaction rate contours at D=1.94 . 55
4.25 Curvature of flame front in the rz plane at stoichiometric vs the radial velocity 55
4.26 Temperature and species contours of a single spiral for φ = 2.0, Yo∞ = 0.2,

H0 = 0.1, Ts = 1.0, β = 25, Ze = 5.43 and D = 1.91 at time = 300, 320, 340 58
4.27 Temperature and species contours in the zθ plane of a single spiral for φ = 2.0,

Yo∞ = 0.2, H0 = 0.1, Ts = 1.0, β = 25, Ze = 5.43 and D = 1.91 at time = 340 59
4.28 Single spiral contours and relative velocity vectors for case 1, D = 1.91. Con-

tour Values:4, 6, 8. 59
4.29 Slope of leading edge as function of r . 60
4.30 Single spiral observed in the experiments of Nayagam and Williams (Printed

with permission). 61
4.31 Temperature contours of single spirals for φ = 2.0, Yo∞ = 0.2, H0 = 0.1,

Ts = 1.0, β = 25, Ze = 40 at a. D = 1.91, b.D = 1.88 and c.D = 1.86 62
4.32 Overlay of spirals for D = 1.90, D = 1.88 and D = 1.86 63
4.33 Temperature and species contours of a double spiral for φ = 2.0, Yo∞ = 0.2,

H0 = 0.1, Ts = 1.0, β = 25, Ze = 5.43 and D = 1.85 at time = 120, 140, 160 65
4.34 Temperature and species contours in the zθ plane of a double spiral for φ =

2.0, Yo∞ = 0.2, H0 = 0.1, Ts = 1.0, β = 25, Ze = 5.43 and D = 1.85 at
time = 160 . 66

4.35 Non-dimensional Velocities . 68
4.36 S-shaped Response . 68
4.37 Temperature contour of a flame hole for φ = 5.0, Yo∞ = 0.2, H0 = 0.1,

Ts = 1.0, fβ = 50, Ze = 5.43 and D = 6.7 . 69
4.38 Temperature contour of a single spiral for φ = 5.0, Yo∞ = 0.2, H0 = 0.1,

Ts = 1.0, fβ = 50, Ze = 5.43 and D = 6.6 . 69
4.39 Temperature contour of a double spiral for φ = 5.0, Yo∞ = 0.2, H0 = 0.1,

Ts = 1.0, β = 50, Ze = 5.43 and D = 6.2 . 70

x

4.40 Temperature, scalar and cross scalar contours in the xy plane of a flame hole
for φ = 2.0, Yo∞ = 0.2, H0 = 0.1, Ts = 1.0, β = 25, Ze = 5.43 and D = 1.95 . 77

4.41 Temperature, scalar and cross scalar contours in the xy plane of a single spiral
for φ = 2.0, Yo∞ = 0.2, H0 = 0.1, Ts = 1.0, β = 25, Ze = 5.43 and D = 1.9 . 77

4.42 Temperature, scalar and cross scalar contours in the xy plane of a double
spiral for φ = 2.0, Yo∞ = 0.2, H0 = 0.1, Ts = 1.0, β = 25, Ze = 5.43 and
D = 1.85 . 77

B.1 Order of Grid Convergence . 87
B.2 Benchmark Problem 1, Grid=16 cubed . 89
B.3 Benchmark Problem 1, Grid = 32 cubed . 90
B.4 Temperature Profile for Benchmark Problem 2 91
B.5 Error for Benchmark Problem 2 . 92
B.6 Benchmark Problem 3, Error in the Temperature, Grid = 16 cubed 93
B.7 Benchmark Problem 3, Error in the Species, Grid = 16 cubed 93

C.1 The first eigenvalue as a function of D for several k’s, N = 50 98

xi

List of Symbols

English Symbols

Ai, Bi, Ci Runge-Kutta coefficients
b Angular velocity
B Pre-exponential factor
Cp Specific heat
D Damköhler number
D∗ Highest Damköhler number at which non-uniform flames can be sustained
DE Extinction Damköhler number
D Scaling factor for the Damköhler number
Di Diffusion coefficient for species i
E Internal energy; average error
L2 Average error
Ep Parallel efficiency
F,G,H Similarity variables for the Von Karman spinning disk solution
h Grid spacing
k Wave number
Lei Lewis number of species i
n Problem size
N Total number of grid points
P Pressure
p Pressure; number of processors; order of convergence
Pe Peclet number
Pr Prandtl number
Q Heat release
r, θ z Cylindrical coordinates
Ru Universal gas constant
Sp Speed-up
Sci Schmidt number for species i
T Temperature
t Time
T ∗ Burke-Schumann flame temperature

xii

u Radial velocity
v Tangential velocity
w Axial velocity
x, y, z Cartesian coordinates
Yi Species i
Z Mixture fraction
z∗ Burke-Schumann flame location
Ze Zeldovich number

Greek Symbols

αi Ratio of stoichiometric mass fraction for species i
β Non-dimensional heat release parameter
χ Scalar dissipation rate
χc Cross-scalar dissipation rate
χs Scalar dissipation rate at the stoichiometric surface
κ Curvature
λ Thermal conductivity
Λ Reaction rate
µ Viscosity
ν Dynamic viscosity
νi Stoichiometric coefficient of species i
ω Growth rate
φ Mixture strength
ρ Density
τ Non-dimensional time
τχ Diffusive time

xiii

Chapter 1

Introduction

The evolution of non-uniform flames is typically a manifestation of the intrinsic instabilities

of the system. These instabilities lead to dynamics that are unique and offer insight into

the conditions necessary for the sustainability of the flame. An understanding of these

instabilities can also be of importance to turbulence modeling. The flame supported by a

rotating porous plug burner offers a suitable platform for the study of such an instability.

Here the non-uniformity appears in the form of flame holes and spirals. The spirals are

particularly interesting because they are distinct flames that rotate about the axis of the

burner, and thus simultaneously support an ignition front and a trailing extinction front.

An instantaneous representation of such a flame in terms of the scalar dissipation rate is

characterized by distinct regions separated by edges representing propagation and recession

of the flame. This study aims to identify the conditions that render the diffusion flame

formed on a rotating porous plug burner unstable, and to analyze the features of the resulting

non-uniform flame such as the dynamic edges, the characteristics of which may be of some

importance to the study of turbulent flames. We begin our discussion with a more detailed

1

look at the configuration we are considering and a review of other studies that provide

information on the onset of instabilities in diffusion flames.

Rotation of the porous plug causes a flow of the ambient air toward the burner, while

there is a steady flow of fuel from the burner exit. Consequently, the fuel and air mix at a

finite distance above the burner surface and a diffusion flame is formed, as sketched in figure

1.1. Here, the injection velocity of the fuel is w0 and the angular velocity of the burner is

b0. If b0 > 0 then the burner rotates counterclockwise. In this study the fuel is taken to be

methane and the oxidizer is air. The viscosity, thermal conductivity, and the specific heat

at constant pressure are taken to be constants. The density is also taken to be constant,

uncoupling the mass and momentum equations from the energy and species equations. This

is a standard modeling approach in combustion and has proven to be robust in identifying

important parameters and their effect on stability [6]. The flow is solved, independently of

the combustion equations, using the similarity solution for the Von Karman swirling flow [7].

For the combustion equations, a one-step global irreversible reaction is considered and the

reaction rate is taken to be of the Arrhenius type. The system of unsteady, three-dimensional

equations is then solved numerically using the velocity profiles as inputs.

Experimental studies using the rotating burner configuration show the evolution of non-

uniform flames with variations in the rotational speeds of the burner [2], [3]. The experiments

commence at low rotational speeds that sustain a steady flat flame. As the rotational speed is

increased a pulsating flame hole, characterized by a flame sheet with a circular extinguished

region in the center, forms. The hole expands outward until it reaches a critical radius, and

then propagates inward to reestablish the flat flame; the cycle continues with frequencies

2

Figure 1.1: Sketch of a diffusion flame supported by a rotating burner

ranging from 1 − 4 Hz. As the rotational speed is increased further this pulsating hole

transitions into single-armed, and then multi-armed, spiral flames.

Another set of experiments that use a similar configuration are those performed using a

rotating PMMA disk, facing downward, burning in air. These show that steadily burning

diffusion flames last for 15 to 20 s at low rotation speeds and high flow rates [1]. In these

experiments two distinct flame configurations are observed. In one configuration a circular

flame sheet of finite radius is formed and undergoes symmetric shrinking until it is extin-

guished. In the other, the initial circular flame disintegrates asymmetrically, forms spirals

and is extinguished. In a related study Nayagam and Williams [8] investigate the inflamma-

bility limits of a stagnation point flow impinging on a spinning fuel disk. Here the authors

consider a stagnation point flow with an external radial velocity gradient and a spinning

3

fuel disk with Arrhenius pyrolysis. This asymptotic study shows that the inflammability

boundaries for the one-dimensional system are a function of the strain-rate parameter, a

combination of the external radial velocity and the angular velocity of the disk. Thus, the

strain-rate is an important parameter and may also have an effect on the stability of the

system.

The influence of the strain-rate on the stability of diffusion flames is evidenced by a study

of flames formed between opposed slot jet burners [9]. In these experiments a strain-rate

gradient along the length of the burners is introduced by a slight misalignment of the burner

exits. There is a threshold for the local strain-rate value below which the spatially uniform

diffusion flame is replaced by a stable edge flame configuration [10], [11].

An experimental study by Pellet et al. [12] of diffusion flames formed between opposed

jet burners shows that increases in the flow velocities causes a disk flame to “rupture”

from the center outward. The resulting annular flame shifts axially until it reaches a stable

location at the stagnation point of the flow. A reduction of the mass flow rate from the

value where the ring flame is observed, leads to a shrinking and shifting of the ring until the

disk flame is restored. The subsequent two-dimensional numerical study of Frouzakis et al.

[13], reproduces the qualitative results of Pellet et al. [12], and shows that an increase in

the Reynolds number of the flow leads to the local extinction of the flat diffusion flame and

the formation of an edge-flame. The authors identify a range of Reynolds numbers within

which either a diffusion flame or an edge-flame can form. Within this range of Reynolds

numbers the type of flame that is obtained is dependent on the initial conditions; however,

a mechanism for the transition of a diffusion flame to an edge flame is not established.

4

In another two-dimensional numerical study, Lu and Ghoshal [14] show that the dynamic

behavior of a hole is dependent on the strain rate and the hole radius; for every strain rate

there is a critical hole radius that is a bifurcation point and separates the expanding and

shrinking behavior.

These destabilizing effects of the strain rate on diffusion flames are reminiscent of the

transition from a stable to an unstable branch along the S-shaped response curve shown in

figure 1.2. The S-shaped curve represents the typical response of a one-dimensional diffusion

flame to variations in Damköhler number (D), the ratio of the chemical reaction rate to the

rate of diffusion. Here, DE represents the extinction point while DI represents the ignition

point. An investigation of the fast-time instability of a counterflow system shows that the

top branch of the S-response curve is stable while most of the middle branch is unstable, and

that the extinction point is where the flame sheet transitions from a stable to an unstable

solution [15]. Sustainable non-uniform flame patterns are typically observed within a narrow

range of Damköhler numbers on the upper branch of the S-response curve [16], [17], [18].

Buckmaster and Jackson [19], in their investigation of the propensity of flame holes to close

in a zero velocity field, identify detachment Damköhler numbers, the maximum Damköhler

number for which a hole will close. Thus, the S-response curve can provide a relatively clear

visualization of parameters where the system is unstable.

Although the onset of instability in a system is typically a function of the Damköhler

number, there are other parameters that affect the range of Damköhler numbers within

which the system is unstable. A theoretical study by Kukuck and Matalon [18], on oscil-

lations in a diffusion flame formed in a semi-infinite domain, shows that increases in the

5

Figure 1.2: The S-shaped sesponse curve

mixture strength (defined as the ratio of the fuel and oxidizer mass fractions at the bound-

aries normalized by the stoichiometric coefficients), results in an increase in the range of

Damköhler numbers where oscillations occur. This study also shows that an increase in the

fuel supply temperature relative to the temperature of the oxidizer also promotes the onset

of oscillations. The importance of these boundary conditions is also highlighted in a study

of a counterflow in a rectangular channel closed at one end [20]. Here the authors show that

stable flames formed in the channel consist of an edge near the closed end of the channel

and a trailing diffusion flame. From a large Damköhler number analysis on the quasi one

dimensional diffusion flame far from the edge they find that the wall boundary conditions

have a significant effect on the strength of the diffusion flame. It is shown that there exists

a range for the supply mixture strength beyond which a solution for the diffusion flame does

not exist. The imposition of the diffusive fluxes at the boundaries leads to weaker flames,

which in turn are prone to oscillations if the supply mixture strength has a low enough value.

6

Heat losses to the channel wall also have an effect on the onset of stability. The effect

of heat loss is considered in detail in the context of a premixed flame anchored to a porous

plug burner by Margolis [21] and by Buckmaster [22]. These studies show that heat loss to

the burner has a stabilizing effect on the left stability boundary of the premixed flame. In

terms of the right stability boundary, increases in the heat loss lead to a destabilizing shift

till a threshold is reached, beyond which the burner is stabilizing. For high enough values of

the activation energy, a Lewis number stability band does not exist.

Another parameter which affects the stability of diffusion flames is the Lewis number.

The Lewis number has an affect, primarily, on the type of instability exhibited by a system.

Chen et al. [23] observe that cellular flames can only be established close to extinction

and for low effective Lewis numbers (Leeff), defined as the Lewis number for the more

completely consumed reactant. Cheatham and Matalon [17], in a theoretical study of cellular

instabilities in a diffusion flame formed in a semi-infinite domain, show that for Lei ≤ 1 there

exist unstable modes at D higher than the extinction value. For sufficiently large D the flame

is stable. As D is lowered the flame becomes unstable before the extinction value, DE, is

reached. The growth rate for the instabilities increases as D is lowered further. The stability

boundaries for different Lewis numbers indicate that, as the Lewis number for the oxidant

is lowered, the boundaries shift toward higher values of Lef making the cellular instability

more accessible.

The effect of Lewis numbers on pulsating instabilities for the same configuration is given

by Kukuck and Matalon [18]. They show that for a fixed mixture strength and fixed oxi-

dant Lewis number there is a range of fuel Lewis numbers 1 < Lef < Lef∗ within which

7

oscillations can occur. An increase in the oxidant Lewis number leads to an expansion of

this range and an increase in the range of Damköhler numbers within which the system can

support oscillations.

From the discussion above it is evident that the key parameters for the onset of insta-

bilities, and the consequent spatially non-uniform flame structures, in diffusion flames are

Damköhler number, Lewis number, the boundary conditions at the injection surface, and the

strain rate. In this study we analyze the affect of some of these parameters on the stability

of the flame supported by a rotating porous plug burner. We begin with a detailed account

of the formulation in section 2 and a discussion of the numerical method in section 3. A

discussion of the results is given in section 4.

8

Chapter 2

Governing Equations and Boundary

Conditions

In this study the density is taken to be constant. This facilitates the numerical solution

by uncoupling the transport equations from the combustion equations. In doing so the ef-

fect of the temperature increase, due to reaction, on the flow is ignored. Consequently, the

flow is modeled using the Von Karman spinning disk similarity solution [7]. The dimen-

sional governing equations for a constant density and constant viscosity axisymmetric flow

in cylindrical coordinates (r, θ, z) are given by

1

r

∂(ru)

∂r
+
∂w

∂z
= 0, (2.1)

u
∂u

∂r
− v2

r
+ w

∂u

∂z
= −1

ρ

∂p

∂r
+ ν

[
∂

∂r

(
1

r

∂ru

∂r

)
+
∂2u

∂z2

]
, (2.2)

u
∂v

∂r
+ w

∂v

∂z
+

1

r
uv = ν

[
∂2

∂r

(
1

r

∂rv

∂r

)
+
∂2v

∂z2

]
, (2.3)

u
∂w

∂r
+ w

∂w

∂z
= −1

ρ

∂p

∂z
+ ν

[
1

r

∂

∂r

(
r
∂w

∂r

)
+
∂2w

∂z2

]
, (2.4)

9

where (u, v, w) are the radial, tangential and axial velocities, respectively. The appropriate

boundary conditions are,

At z = 0, u0 = 0, v0 = b0r, w0 = w0, P0 = 0, (2.5)

At z =∞, u∞ = 0, v∞ = 0 and w∞ = C. (2.6)

At z = 0 the burner rotates with an angular velocity of b0 while fuel is injected from the

porous surface. The vertical velocity at the surface is given by, w0. The constant C is to be

determined as a part of the solution.

A one-step irreversible reaction of the form,

νfFuel + νoOxidant→ νpProducts (2.7)

is considered, where νf and νo are the stoichiometric coefficients of the fuel and oxidant,

respectively. The chemical reaction rate is assumed to be Arrhenius. The Mach number is

assumed to be low and so the effect of pressure is negligible in the energy and species equa-

tions. The unsteady, three-dimensional energy and species equations for constant density

and constant viscosity are given by

L[ρCpT, ρYi]−M[λT, ρDiYi] = Ω[Q,−αi], (2.8)

where

L =
∂

∂t
+ u

∂

∂r
+
v

r

∂

∂θ
+ w

∂

∂z
,

M =
1

r

∂

∂r
+

∂2

∂r2
+

1

r2

∂

∂θ2
+

∂2

∂z2
.

Here, T is the temperature, Yi the species mass fraction, Q the heat release, αi the ratio of

10

stoichiometric mass fractions, and Di the diffusion coefficient for species i. Ω is the reaction

rate and has the form, Ω = BYoYfexp{−E/RuT}, where B is the pre-exponential factor and

E/Ru is the gas phase activation temperature. The boundary conditions are

At z = 0 : T = Ts,
∂Yf
∂z

=
wo
Df

(Yf − Yf0), Yo =
wo
Do

Yo,

At z =∞ : T = T∞, Yo = Yo∞, Yf = 0,

At r = δ : T = Tavg, Yi = Yiavg , (2.9)

At r =∞ :
∂T

∂r
= 0,

∂Yi
∂r

= 0,

P eriodic in θ : T |θ=0 = T |θ=2π, Yi|θ=0 = Yi|θ=2π,

∂T

∂θ
|θ=0 =

∂T

∂θ
|θ=2π,

∂Yi
∂θ
|θ=0 =

∂Yi
∂θ
|θ=2π.

At the burner surface the temperature is set to a constant, Ts. As discussed earlier, this is an

important parameter because increases in the temperature differential between the burner

exit and the ambient increases the range of Damköhler number within which the system is

unstable [18]. Flux conditions are used for the species at the burner surface. At z =∞ the

temperature is set to the ambient temperature, T∞, while the fuel mass fraction is set to zero

and the oxidizer mass fraction is set to the appropriate value for air. Neumann boundary

conditions are applied at r = ∞, while at r = 0 dirichlet conditions derived from averages

of the field variables from adjacent θs are used, that is,

Tavg =

∫ θ+a

θ−a
T (δ, θ, z)dθ (2.10)

Yiavg =

∫ θ+a

θ−a
Yi(δ, θ, z)dθ (2.11)

11

with δ << 1 and a = π/8. The temperature and species are taken to be periodic in θ .

12

2.1 The Constant-Density Model

The constant-density approximation is crucial in rendering combustion problems manageable

for analysis. Burke-Schumann in effect introduced this approximation in their pioneering

analysis of diffusion flames [24]. The justification for it can be derived from the notion that

variations in temperature are a result of combustion and the heat release is small compared

to the energy of the mixture, hence, the density variations are small and the velocity field

can be approximated to be that of a constant-density fluid to leading order [6]. In most

combustion phenomena, however, there are large increases in temperature and its primary

effect on the flow is in the form of thermal expansion. Thermal expansion plays a crucial

role in premixed flames in terms of promoting an intrinsic hydrodynamic instability, but it

does not have a similar effect on diffusion flames. Thus, the constant-density model has been

used prudently in numerous studies to model diffusion flames. In a constant-density model,

the density is taken to be a constant everywhere, thus neglecting any effects of thermal

expansion. In recent years the validity of the constant-density model, in terms of its effect

on diffusion flames, has been explored through numerical studies [25], [26], [27].

These studies suggest that although thermal expansion affects flame stability it does not

play as crucial a role in diffusion flames as it does in premixed flames. It is found that oscil-

latory or cellular diffusion flames are typically not driven by hydrodynamic instabilities but

are thermo-diffusional in nature [26]. A comparison of growth rates for a planar unstrained

flame produced by one reactant introduced at one end of a tubular domain diffusing against

a stream of the other reactant at the opposite end, shows that thermal expansion results

in a widening of the range of Damköhler numbers, within which cellular instabilities occur

13

while shrinking the range within which oscillatory instabilities occur [25].

A study of edge flames formed by introducing two streams, one of fuel and the other

oxidizer, through porous plugs shows that the effect of thermal expansion is primarily on

the standoff of distance of the flame [27]. At low values of axial velocity this effect is small

however at higher velocities it is significant.

These studies show that the onset of oscillations in diffusion flames is not a result of the

constant-density model. Thermal expansion does have an effect on the quantitative nature

of the instabilities in terms of ranges of parameters and stand-off distances, however, the

constant-density model generally provides a good approximation to the qualitative results. In

terms of the current study, it is expected that thermal expansion would result in the widening

of the range of Damköhler numbers within which the instabilities manifest themselves, while

having little effect on the qualitative nature of the instabilities.

2.2 The Porous Plug Burner

A porous plug burner is considered in this study primarily for ease of numerical represen-

tation. In a porous plug burner the reactant is injected through the the burner tube at a

controlled rate and a constant temperature; the backflow of products is prevented by the

porous plug. It is assumed that the heat conducted back to the burner is removed by cooling

coils such that the surface temperature is constant. Thus, the temperature, mass flux and

the composition of the reactants can be prescribed at the burner exit. These boundary con-

ditions at the burner exit are expected to affect both the structure and the stability of the

diffusion flame. As mentioned earlier, heat loss to the burner affects the stability boundaries

14

of a premixed flame anchored to a porous plug [21], [22]. Similar effects are expected in

the current configuration as evidenced by the experimental studies of Nayagam [3]. Here, a

17.78 cm diameter burner is considered and the injection velocity is varied from 0 cm/s to

0.20 cm/s. In the corresponding map of flame patterns it is shown that for a rotation rate

of around 3 rps the flame can transition from a single spiral to a semi-circular flame with

a straight edge, to a pulsating flame hole as the fuel flow rate increases. Thus, the value of

the mass flux is an important parameter of study.

The temperature at the burner exit is also expected to affect the nature of the flame

supported by the rotating porous plug. Studies by Kukuck and Matalon [18] and Short and

Liu [20] show that an increase in the temperature differential between the reactants has an

adverse effect on the stability of the diffusion flame. In the current study the temperature

at infinity is set to the ambient, thus the parameter of interest in terms of the temperature

differential is Ts. Since the burner exit cannot be cooler than the ambient the minimum pos-

sible temperature at the burner exit is T∞. This is also expected to be the most stable exit

temperature as indicated by [18] and [20]. Previous studies using burners show that under

experimental settings, the temperature at the burner exit is likely to be slightly higher than

the ambient. Smooke et al [28] find that taking an exit temperature of 1.4T∞ improves cor-

relation of the flame structure and temperature between experiments and two-dimensional

numerical simulations. In a more recent numerical study of an axisymmetric counterflow

diffusion flame formed between opposing jets, the temperatures at the jet exits were set to

345 K at the oxidizer boundary, 315 K at the fuel boundary and 350 K at the cooling

flange boundaries surrounding the burner exits [29]. The results from these numerical sim-

15

ulations correlated well with the experimental values as well. This suggests, however, that

the temperature in the vicinity of the burner exit is likely to be higher than the ambient

even when cooling mechanisms are utilized. Thus, in this study two exit temperatures will

be considered to evaluate the affect of this boundary condition on the stability of the flame.

The ideal case where the exit temperature is set to the value of the ambient, T∞, and a case

where the exit temperature is 1.4T∞.

16

2.3 Non-dimensional Equations

For non-dimensionalization, the lengths are scaled by
√
ν/b0, time by the reciprocal of b0,

temperature by T∞, and the species by Yf0, the mass fraction of the fuel at the burner exit.

The similarity variables for the velocities are

F =
u

b0r
, G =

v

b0r
, H =

w√
b0ν

, P =
p

ρb0ν
, (2.12)

where F, G, H and P are functions of z. The resulting non-dimensional equations are

H ′ = −2F, (2.13)

F ′′ = F 2 + F ′H −G2, (2.14)

G′′ = 2FG+HG′, (2.15)

P ′ = 2HF − 2F ′. (2.16)

Here, one boundary condition is needed for H, two for F , two for G, and one for P. Also,

the equation for P is uncoupled from the rest and may be ignored in the simulation. The

boundary conditions are given by

F (0) = 0, G(0) = G0 = 1, H(0) = H0, P (0) = 0,

F (∞) = 0, G(∞) = 0. (2.17)

The non-dimensional unsteady energy and species equations are given by

L[T, Yi]−M [T, LeiYi] = Ω[β,−αi], (2.18)

where

L = ∂/∂t+ rF∂/∂r +G∂/∂θ +H∂/∂z,

17

M = r−1 ∂/∂r + ∂2/∂r2 + r−2 ∂2/∂θ2 + ∂2/∂z2.

Here, Lei = ρCpDi/λ, is the Lewis number for species i, β = QYf0/CpT0, the heat re-

lease parameter, Ω = DDYoYfexp{Ze(1 − T ∗/T)}, the reaction rate, D = Bb−1
0 ρ−1Yf0,

the Damköhler number, the ratio of the chemical reaction rate to the diffusion rate, Ze =

E/(RuT0T
∗) the Zeldovich number, D = Ze3T ∗/z∗2, a scaling factor, and, T ∗ and z∗ the

Burke-Schumann flame temperature and flame location, respectively, for the baseline param-

eters listed in section 4.1. The Prandtl number, Pr = νρCp/λ, is set to 1.0. The boundary

conditions are

z = 0 : T0 = Ts, Yfz = H0Lef (Yf − 1),

Yoz = H0LeoYo,

z =∞ : T∞ = 1, Yf = 0, Yo = φ−1,

r = δ : T = Tavg, Yi = Yi,avg

r =∞ : Tr = 0, Yir = 0,

and periodic in θ

Tθ|θ=0 = Tθ|θ=2π, Yiθ |θ=0 = Yiθ |θ=2π,

Tθ|θ=0 = Tθ|θ=2π, Yiθ |θ=0 = Yiθ |θ=2π.

Here, φ is the mixture strength defined as the ratio of the fuel mass fraction at the burner

surface to the oxidizer mass fraction at infinity. This definition of the mixture strength is

not normalized by the stoichiometric coefficients and is thus different from the one used by

Kukuck and Matalon [18]. At the burner surface the non-dimensional temperature is set to a

constant, Ts, and at z =∞ the temperature is set to the ambient temperature, unity, while

18

the fuel mass fraction is set to zero. Neumann boundary conditions are applied at the outer

radial boundary and Dirichlet conditions at the inner boundary, while the temperature and

species are taken to be periodic in θ .

For the current study the fuel is taken to be methane, and the oxidizer is air; thus,

Lef = 1.0, Leo = 1.0 αf = 0.25 and αo = 1.0. The mass fraction of air at infinity, Yo∞ is

taken to be 0.2. The parameters of study are D, Ts, H0, and φ while β and Ze are kept

constant.

19

Chapter 3

Numerical Method

The one-dimensional similarity equations of the Von Karman spinning disk flow, given by

equations (D.2-D.4), are solved using the COLSYS package [30]. Colsys is a robust colloca-

tion package used for solving mixed-order systems of multipoint boundary value problems.

It employs a method of spline collocation at Gaussian points [30].

The energy and species equations, (D.7), are solved using a fourth-order centered finite

difference scheme in space and a 2N -storage, five-stage, fourth-order Runge-Kutta scheme,

(5, 4) RK, in time [4]. The fourth order centered difference schemes is used because it

provides high accuracy and is relatively easy to implement on a parallel platform. Section

B.0.1 gives a summary of the grid refinement study that shows that the centered difference

scheme is fourth order accurate.

The 2N -storage (5, 4) RK scheme is used due to its high accuracy and low storage re-

quirements. The low-storage feature is especially relevant due to the relatively large problem

sizes being considered in this study. The 2N -storage method for an initial value problem

Ut = F [t, U(t)]; U(t0) = U0, (3.1)

20

is given by

tj = tN + Cj ∗ h,

dUj = AjdUj−1 + hF (Uj),

Uj = Uj−1 +BjdUj, j = 1,,M, (3.2)

where, h is the time step and j is a step in the RK scheme. Also, U1 ≡ UN , UM ≡

UN+1, tM ≡ tN+1, and the scheme is self-starting so that A1 = 0. Thus, in a 2N storage

scheme only the dU and U vectors need to be stored. The coefficients, Aj, Bj and Cj of

the 2N storage (5,4) RK scheme used in this study are given in table 3. Carpenter and

Kennedy [4] have shown that the non-linear accuracy for the (5, 4) RK is higher than that

for the (4, 4) RK and that in terms of the work ratio the (5, 4) RK is nearly as efficient. In

comparison to the Williamson (3, 3) RK, 2N storage[31] the (5, 4) RK has higher accuracy

for a given step size and greater stability boundaries [4]. Section B.0.2 also gives results from

benchmark studies used to verify the capabilities of the code in solving simplified problems,

the analytical solutions of which are known.

21

Coefficient Value

A1 0.0

A2 −0.4178904745

A3 −1.192151694643

A4 −1.697784692471

A5 −1.514183444257

B1 0.1496590219993

B2 0.3792103129999

B3 0.8229550293869

B4 0.6994504559488

B5 0.1530572479681

C1 0.0

C2 0.1496590219993

C3 0.3704009573644

C4 0.6222557631345

C5 0.9582821306748

Table 3.1: Coefficients for optimal (5, 4), 2N -storage RK scheme, solution 3 of Carpenter
and Kennedy [4]

22

Figure 3.1: Sketch describing the one-dimensional diffusion problem used for code valida-
tion [5]

3.1 One-Dimensional Validation

A validation study is undertaken to compare the one-dimensional results obtained from the

current solver with those obtained by Vance et al [5] for a diffusion flame between plane

parallel porous walls. Vance et al [5], investigate the stability of a one-dimensional problem

with flowing fuel and diffusing oxidant (Lef = Leo = 1) on opposite sides of the reaction

sheet. Using perturbation analysis they find that for Lewis numbers less than unity the

upper branch of the S response curve is stable and the middle branch is unstable. At Lewis

numbers greater than unity there are damped oscillations for 1 < Le < Lec but the entire

upper branch is stable. For Lewis numbers greater than a critical value Lc the beginning of

the upper branch of the S response curve is unstable.

Figure 3.1 shows a sketch of the problem considered. Here the fuel travels through

a porous wall at a finite speed u toward another porous wall with diffusing oxidizer. A

flame sheet forms from the interaction of the fuel and and the diffused oxidizer. The flow

23

is assumed to be uniform, radiative heat losses are ignored, and a single step irreversible

Arrhenius reaction is assumed [5]. The non-dimensional equations are given by

∂T

∂t
+ Pe

∂T

∂x
=
∂2T

∂x2
+ ω, (3.3)

∂yi
∂t

+ PeLe
∂yi
∂x

=
∂2yi
∂x2
− ω, (3.4)

where i = O, F . The boundary conditions are

T = To yF = 1 yO = 0 at x = −1,

T = To yF = 0 yO = 1 at x = +1.

Figure 3.2 shows the two leading eigenvalues for this problem for a Lewis number of 2.0,

where the two eigenvalues form a complex conjugate pair beyond point B′. Between points B′

and C ′ the real parts of the eigenvalues are positive thus implying that the flame is unstable

for this range of Damköhler numbers and so small perturbations would lead to oscillations

which grow in time and eventually result in extinction. Beyond C ′, however, perturbations

would cause damped oscillations resulting in a non-oscillatory steady state. This behavior

is also illustrated by solving equations 3.3-3.4 using a second-order correct finite difference

method and the results from this are shown in Figure 3.3, where the unstable solution is

for a Damköhler number lower than C ′ and the stable solution is for a Damköhler number

greater than that at C ′.

For the purposes of code validation the above system is solved using the finite difference

solver used in the current study. The steady state solution of the system given in equations

24

Figure 3.2: Leading two eigenvalues for one-dimensional code validation problem for Le =
2.0, Ta = 4.0, P e = 0.0, T0 = 0.05 [5]

3.3 and 3.4 are computed using COLSYS [30] and used as initial conditions for the solver.

Figures 3.4 a and b show the steady state solutions at Damköhler numbers of 1.955e6 and

2.050e6 respectively.

Figures 3.5 and 3.6 shows transient results obtained for Le = 2.0, P e = 0.0, Ta =

4.0, T0 = 0.05. As seen from this plot, the results are similar to the ones obtained by Vance

Figure 3.3: Transient solution for one-dimensional code validation problem Le = 2.0, P e =
0.0, Ta = 4.0, T0 = 0.05 [5]

25

a. b.
Figure 3.4: Steady state solutions for Le = 2.0, P e = 0.0, Ta = 4.0, T0 = 0.05, a.
D = 1.955e6, b. D = 2.050e6

et al. Small perturbations at D = 2.050e6 cause damped oscillations which eventually die

down and lead to a non-oscillatory steady state. At D = 1.955e6 the system is unstable and

the amplitude of the oscillations increase with time and eventually the flame is extinguished.

These results show that the finite difference solver is able to capture both the steady state and

the transient characteristics of the simplified problem considered by Vance et. al. [5]. These

results validate the finite different solver in one dimension, and the same finite difference

scheme is used in all three spatial dimensions.

26

Figure 3.5: Transient solution for Le = 2.0, P e = 0.0, Ta = 4.0, T0 = 0.05, D = 1.955e6

Figure 3.6: Transient solution for Le = 2.0, P e = 0.0, Ta = 4.0, T0 = 0.05, D = 2.050e6

27

3.2 Parallel Implementation

The solver is adapted for parallel processing using the Message Passing Interface (MPI). In

the parallel implementation each processor is assigned a portion of the three-dimensional

domain. A processor completes each step of the Runge-Kutta iterations for its domain and

then communicates with its neighbor to exchange the necessary boundary values. Results of

a performance study for the parallel implementation are given in figures 3.7 and 3.8. Here

the problem size, n, is given by,

n = 16 : 16 X 16 X 16 in (r, θ, z),

n = 32 : 32 X 32 X 32,

n = 64 : 64 X 64 X 64,

n = 128: 128 X 128 X 128,

and p is the number of processors. The speedup (Sp) [32] is defined as,

Sp =
serial time

parallel time
=
t1
tp
, (3.5)

and the efficiency (Ep) [32], is defined as,

Ep =
serial cost

parallel cost
=

t1
ptp

. (3.6)

Here, the serial time, t1, is the time taken for one processor to complete an assigned task,

and the parallel time, tp, is the time taken for p processors to complete the same taskin

parallel.

28

Figure 3.7: Speedup as a function of the problem size

Figure 3.8: Efficiency as a function of the number of processors

29

Figure 3.9: Scalability of the parallel code

Figure 3.7 shows the speedup as a function of the problem size for different number of

processors. It is evident that an increase in the number of processors results in an increase

in the speedup. As the problem size is increased, at first the speedup increases but it

reaches a peak value and then decreases until it asymptotes to a particular value. Figure 3.8

shows that the efficiency is higher than 1 for most of the problem size/number of processor

combinations. The solver is inefficient when the problem size is too small relative to the

number of processors used. In these cases the communication time between the processors

is higher than the time necessary for the computations and so additional processors actually

result in longer run times.

Figure 3.9 demonstrates the scalability of the parallel code with increasing number of

processors. Here, each processor is assigned either 83 or 163 grid points. As seen from the

figure, the time taken remains fairly constant with increasing number of processors, and the

consequent increase in the total problem size.

30

3.3 Solution Methodology

In order to solve the three-dimensional unsteady energy and species equations, the one-

dimensional Burke-Schumann type flame sheet solution is used as the initial condition. This

solution is computed using COLSYS [30]. This is a reasonable approach since the simula-

tions commence at large Damköhler numbers where the fast chemistry limit is valid, and

so the response is one-dimensional. Radial and angular perturbations are introduced into

the system once the steady state solution is reached for a given Damköhler number. If the

small perturbations do not grow and the flat flame persists, the simulations are restarted

at a lower Damköhler number using the three-dimensional unperturbed solution from the

previous Damköhler number as the initial condition. This process is repeated till the system

becomes unstable to the perturbations and non-uniform flames appear.

31

3.4 Grid Convergence

Figures 3.10-3.13 show contour plots for the temperature and reaction rate for four different

grids. The parameters used for these simulations are D = 0.14, φ = 2, H0 = 0.1, Ts = 1.0,

β = 20, and Ze = 15. As seen from figure 3.10 the flame is not fully resolved when a

323 grid is used, however, it is evident from 3.11-3.13 that the contours vary little as the

grid densities in r and θ are increased from 643-128× 128× 64. The flame rotates counter-

clockwise and the oscillations at the trailing edge of the flame are seen in all three cases.

These oscillations are difficult to resolve due to the dynamic nature of the flame. Although

there are some differences in the size of the spiral between the grids, the general shape of the

spiral is grid independent. Comparison of the integral value of the reaction rates over the

entire spatial domain, between the 643, 963 and the 128× 128× 64 grids, given in table 3.2,

shows differences within 5% between the 643 and the two finer grids. Thus, for the results

shown in the following sections a 643 grid is used.

Grid
∫

Reaction Rate Difference (%)

643 1.27× 103

963 1.22× 103 3.94

128× 128× 64 1.21× 103 4.72

Table 3.2: Comparison of the sum of reaction rates

32

a. Temperature b. Reaction Rate
Figure 3.10: Temperature and reaction rate contours for a 32 x 32 x 32 grid

a. Temperature b. Reaction Rate
Figure 3.11: Temperature and reaction rate contours for a 64 x 64 x 64 grid

a. Temperature b. Reaction Rate
Figure 3.12: Temperature and reaction rate contours for a 96 x 96 x 96 grid

33

a. Temperature b. Reaction Rate
Figure 3.13: Temperature and reaction rate contours for a 128 x 128 x 64 grid

34

Chapter 4

Results

4.1 The Burke-Schumann Flame Sheet

The Burke-Schumann limit is important to consider in order to gain a fundamental under-

standing of the diffusion flame, and to establish initial conditions for numerical solutions.

This limit arises as D → ∞ resulting in an infinite reaction rate that can be balanced by

taking the flame sheet to be very thin such that YfY0 → 0. This thin flat flame sheet forms

at a distance z∗ from the burner surface and separates the fuel and the oxidizer. At this limit

the combustion field is expected to be a function of z and t only. The energy and species

equations then become

L(T) = −βα−1
i L(Yi) = Ω, (4.1)

where

L =
∂

∂t
−H ∂

∂z
− ∂2

∂z2
(4.2)

35

however it should be noted that only the steady state is considered in order to solve for the

Burke-Schumann flame sheet. The boundary conditions are

at z = 0, T = Ts,
∂Yf
∂z

= H0(Yf − 1), Yo = 0, (4.3)

at z →∞, T = T∞, Yf = 0, Yo = φ−1. (4.4)

The Schvab-Zeldovich variables are

Z+ = T + βα−1
f Yf and Z− = T + βα−1

o Yo. (4.5)

As D →∞,

L(Z+) = L(Z−) = 0 (4.6)

and the boundary conditions are

at z = 0,
∂Z+

∂z
=
∂Z−
∂z

+H0(Z+ − Ts − βα−1
f), , Z− = Ts,

and

at z →∞, Z+ = T∞, Z− = T∞ − βφ−1

Thus, the temperature and species profiles are given by,

0 < z < z∗ : T = Z+, Yf = β−1αf (Z− − Z+), Yo = 0,

and

z∗ < z < z∞ : T = Z−, Yf = 0, Yo = β−1αo(Z+ − Z−).

The matching condition

Z+(z∗) = Z−(z∗) (4.7)

36

Figure 4.1: Burke-Schumann solution, Schvab-Zeldovich variables

is used to determine z∗. The steady state solutions for Z+ and Z− are obtained using

COLSYS and are shown in figure 4.1 while the temperature and species profiles are shown

in figure 4.2. As seen from this figure, for H0 = 0.1, Ts = 1.0 and β = 25.0, the baseline

parameters for this study, the Burke-Schumann flame temperature, T ∗ = 7.43, and the flame

location, z∗ = 1.54. These of the flame temperature and flame location are used in section

2.3 in the scaling factor for the Damköhler number.

37

Figure 4.2: Burke-Schumann solution, temperature and species profiles

38

4.2 Non-uniform Flames at a Mixture Strength Value

of 2.0

The stability of the three-dimensional spinning burner configuration is investigated using

small pure mode perturbations. It is found that at appropriate Damköhler numbers these

perturbations result in non-uniform flame patterns such as holes and spirals. This phe-

nomenon is first investigated for parameter values of φ = 2.0, Yo∞ = 0.2, H0 = 0.1, Ts = 1.0,

β = 25, and Ze = 40. Figures 4.3 and 4.4 show the velocity profiles and the S-shaped

response curve for this set of parameters. The extinction point, DE, is approximately 1.48

as seen from figure 4.4. D∗ = 1.96 represents the highest Damköhler number at which sus-

tainable non-uniform flames appear. The non-uniform flames observed in this study include

flame holes, single spirals and double spirals as shown in figures 4.6-4.10.

39

Figure 4.3: Non-dimensional velocities

Figure 4.4: S-shaped response

40

Figure 4.5: Temperature contour of a flame hole for φ = 2.0, Yo∞ = 0.2, H0 = 0.1, Ts = 1.0,
β = 25, Ze = 40 and D = 1.96

Figure 4.6: Temperature contour of a flame hole for φ = 2.0, Yo∞ = 0.2, H0 = 0.1, Ts = 1.0,
β = 25, Ze = 40 and D = 1.96

41

Figure 4.7: Temperature contour of a single spiral for φ = 2.0, Yo∞ = 0.2, H0 = 0.1,
Ts = 1.0, β = 25, Ze = 40 and D = 1.91

Figure 4.8: Temperature contour of a single spiral for φ = 2.0, Yo∞ = 0.2, H0 = 0.1,
Ts = 1.0, β = 25, Ze = 5.43 and D = 1.91

42

Figure 4.9: Temperature contour of a double spiral for φ = 2.0, Yo∞ = 0.2, H0 = 0.1,
Ts = 1.0, β = 25, Ze = 40 and D = 1.85

Figure 4.10: Temperature contour of a double spiral for φ = 2.0, Yo∞ = 0.2, H0 = 0.1,
Ts = 1.0, β = 25, Ze = 5.43 and D = 1.85

43

As seen from figure 4.4 the range of Damköhler numbers within which these non-uniform

flames appear is small. However, this range can be further divided into smaller groups

where different modes are viable. For example, for the set of parameters listed above, the

flame hole appears for D = 1.96 to D = 1.92, while single spirals appear for D = 1.91 to

D = 1.85 and so on. It is expected that as the Damköhler number is lowered further the

ranges within which higher modes are sustained can also be determined. However, for this

section the discussion is limited up to double spirals, primarily due to the fact that for the

higher modes the ranges become smaller and so it is difficult to identify distinct regions

corresponding to each mode. The progression of the flames from the flame hole to the single

armed and then the multiarmed spirals with decreasing Damköhler number is reminiscent

of the observations of Nayagam and Williams [3] where the flames transition from flame

holes to spirals with increasing angular velocity. It should be noted here that in the current

formulation the Damköhler number is inversely proportional to the angular velocity. Thus

the trends observed in the simulations are similar to those found in the experimental studies.

The flame patterns are analyzed further in the following sections.

44

a. T b. Yf c.Yo
Figure 4.11: Temperature and species contours of a flame hole for φ = 2.0, Yo∞ = 0.2,
H0 = 0.1, Ts = 1.0, β = 25, Ze = 5.43 and D = 1.96

4.3 Flame Hole

Figures 4.11a-c show the temperature and species contours in the xy-plane of a flame hole

at D = 1.96. Here, a central cold region is surrounded by an axisymmetric, annular flame

sheet. A region of high temperature appears immediately adjacent to the boundary of the

flame hole and then the temperature gradually decreases and oscillates along the radius.

The geometry of the flame hole is better illustrated in the temperature and species contours

in the rz plane given in figures 4.12a-c. Here, the edge of the flame is at a radial location

of approximately r = 13.4. The temperature is high in the triangular region near the edge

of the flame as compared to the tail of the flame. The fuel and oxidizer contours suggest

that there is some mixing near the edge of the hole. However, beyond the edge, the fuel

and oxidizer seem separated suggesting that beyond the boundary region of the hole, where

some premixing may occur, there exists purely a diffusion flame. The characteristics of the

edge of the flame hole is further analyzed in terms of the cross scalar dissipation parameter

in a following section.

The radial oscillations in the trailing diffusion flame beyond the hole region are visible in

45

a. T b. Yf c.Yo
Figure 4.12: Temperature and species contours of a flame hole for φ = 2.0, Yo∞ = 0.2,
H0 = 0.1, Ts = 1.0, β = 25, Ze = 5.43 and D = 1.96

the rz contours as well. These oscillations can be explained by considering small perturba-

tions in the large z field. As z →∞ the angular and radial velocities become negligible while

the axial velocity asymptotes to H∞. Here, the solution of the homogeneous heat equation

is given by

T = exp(−1/2[H∞ +
√
H2
∞ + 4µ2]z)J0(µr). (4.8)

It is found that the wavelength of the radial oscillations shown in figure 4.13 correspond to

µ ≈ 0.14 which implies

T = exp(H∞z)J0(µr) (4.9)

46

Figure 4.13: Radial temperature profile at θ = 0rad.

47

4.3.1 Effect of Damköhler Number on Flame Hole Radius

As discussed in section 4.3 the flame hole is the first non-uniform flame observed as the value

of the Damköhler number nears DE. The flame hole forms at a Damköhler number of 1.96

while a single spiral forms at D = 1.9. It is found that at Damköhler numbers between

these two values the flame hole expands with decreasing Damköhler number. Flame holes

are simulated for 1.940 ≤ D ≤ 1.960 and the flame hole radius, defined as the distance from

the axis to the point where the temperature rises above 5 in the stoichiometric plane, are

tabulated in table 4.1. Figure 4.14 shows the Damköhler number as a function of the flame

hole radius while figures 4.15-4.19 show temperature contours of flame holes at different

Damköhler numbers in the xy and rz planes.

D Flame Hole Radius Temp (r=80) 1-D Flame Temp

1.960 13.37 5.54 5.857

1.955 20.35 5.61 5.857

1.950 22.73 5.40 5.857

1.945 31.24 5.87 5.857

1.940 34.97 5.76 5.848

Table 4.1: Damköhler number and flame hole radii

It is evident from 4.1 that there is a significant increase in the flame hole radius within

the range of Damköhler numbers considered. The expansion of the flame holes suggests that

either there is an increase in the radial dissipation away from the axis and as the Damköhler

48

Figure 4.14: Flame hole radius as a function of Damköhler number

number decreases the reaction is not fast enough to sustain a flame so the hole expands,

or that there is increased dissipation out of the plane in the quenched region as compared

to the region where the flame prevails. The temperature contours in the rz plane suggest

that the tail of the flame is purely a diffusion flame and from table 4.1 it is seen that the

temperatures at r = 80 are generally close to the flame sheet temperatures. These contours

also demonstrate that as the hole expands the hot triangular region adjacent to the flame

hole also expands. Figures 4.20-4.24 show the reaction rate contours of the flame holes

corresponding to Damköhler numbers from 1.96 to 1.94. These contours clearly demonstrate

that the flame is tribrachial. As the Damköhler number is decreased and the hole radius

increases the reaction rate in the rich premixed arm increases. Also, the height of the

premixed arms increase as the Damköhler number decreases. Figure 4.25 demonstrates the

49

relationship between the curvature (κ) in the rz plane at the stoichiometric height, with the

radial velocity. Here, κ is defined as,

κ =
d2y

dr2
/[1 +

(
dy

dr

)2

]3/2, (4.10)

[33], where y = f(r) is the curve representing the reaction rate contour. As seen here, the

curvature in the rz plane changes considerably with the hole radius.

(a) (b)
Figure 4.15: Temperature contours of the flame hole in the xy and the rz planes atD = 1.96

50

(a) (b)
Figure 4.16: Temperature contours of the flame hole in the xy and the rz planes at
D = 1.955

(a) (b)
Figure 4.17: Temperature contours of the flame hole in the xy and the rz planes atD = 1.95

51

(a) (b)
Figure 4.18: Temperature contours of the flame hole in the xy and the rz planes at
D = 1.945

(a) (b)
Figure 4.19: Temperature contours of the flame hole in the xy and the rz planes atD = 1.94

52

Figure 4.20: Reaction rate contours at D=1.96

Figure 4.21: Reaction rate contours at D=1.955

53

Figure 4.22: Reaction rate contours at D=1.95

Figure 4.23: Reaction rate contours at D=1.945

54

Figure 4.24: Reaction rate contours at D=1.94

Figure 4.25: Curvature of flame front in the rz plane at stoichiometric vs the radial velocity

55

4.4 Single Spiral

Figure 4.26 shows the temperature and species contours for a single spiral for D = 1.91, at

three different times. The spiral rotates as a rigid body at a rate of −0.14 rad/time, while

the burner rotates at b0 = 1 rad/time and at the stoichiometric height the angular velocity

is b = 0.36 rad/time. This high relative angular velocity is believed to be one of the main

factors contributing to the differences in the characteristics of the leading edge as compared

to the the trailing one. As seen from figure 4.8 the temperature gradient is steep at the

leading edge while there is a more gradual variation at the tail. This trend is similar to the

one seen in the case of the flame hole where the stationary “leading edge” displays a high

temperature gradient. Another point of note are the wiggles that are present at the leading

edge of the spiral. These oscillations arise due to difficulties in fully resolving the dynamic

edge of the flame. It is found that increasing the grid density reduces the prominence of

these oscillations, however, due to time constraints, the finer grid is not used.

The shape of the spiral is affected by the velocity field as well. In the rθ plane the

temperature profile can be described as a wave that is advected in θ. The line connecting the

peak temperatures of these waves at each r location is at an angle that can be approximated

by the resultant of the radial and angular velocities. This is demonstrated in figure 4.28 where

the velocity field is superimposed on the temperature contours. As seen here the velocity

vectors are almost tangent to the temperature contours. This is further demonstrated in

figure 4.29 where the slope of the leading edge in the rθ plane is plotted against r. As seen

here, the slope is linearly proportional to r, other than toward the radial boundary.

As in the case of the flame holes, both the fuel and oxidizer seem to be consumed only at

56

the regions of high temperature, i.e. the flame region. It is also apparent from the contours in

the zθ plane given in figure 4.27 that there is very little mixing in the flame region suggesting

that the flame is primarily a diffusion flame. In the simulations, the geometry of the flames

do not change once the spiral shape is assumed. Simulations have been run for about four

revolutions without any significant changes in the flame geometry.

57

Time=300

Time=320

Time=340

T Yf Yo
Figure 4.26: Temperature and species contours of a single spiral for φ = 2.0, Yo∞ = 0.2,
H0 = 0.1, Ts = 1.0, β = 25, Ze = 5.43 and D = 1.91 at time = 300, 320, 340

58

T Yf Yo
Figure 4.27: Temperature and species contours in the zθ plane of a single spiral for φ = 2.0,
Yo∞ = 0.2, H0 = 0.1, Ts = 1.0, β = 25, Ze = 5.43 and D = 1.91 at time = 340

Figure 4.28: Single spiral contours and relative velocity vectors for case 1, D = 1.91.
Contour Values:4, 6, 8.

59

Figure 4.29: Slope of leading edge as function of r

60

Figure 4.30: Single spiral observed in the experiments of Nayagam and Williams (Printed
with permission).

4.4.1 Comparison with Experiment

The single spirals simulated in this study are qualitatively similar to the one observed in the

experiments. A snapshot of one such spiral is shown in figure 4.30 (obtained in a private

communication with Vedha Nayagam and printed with permission). This spiral rotates

clockwise and the temperature gradients at the leading edge are steeper than those in the

trailing one. One primary difference between the experimental results and the simulated

ones is the absence of tip meandering in the simulated spirals. This difference could be

attributed to hydrodynamics effects which are ignored in the current study. However, the

qualitative similarities between the experimental and numerical spirals suggest that the

inception of these non-uniform flames is a result of thermo-diffusional instabilities although

their propagation may be affected by changes in the flow field.

61

4.4.2 Effect of Damköhler Number on the Single Spiral

Figure 4.31 shows single spirals simulated for the parameter values of section 4.2 at Damköhler

numbers of 1.90, 1.88 and 1.86 while figure 4.32 shows an overlay plot. As seen here, the

shape of the spirals are similar but the area between the leading and trailing edges of the

spirals decreases slightly as the Damköhler number decreases. The angular velocity of all

three spirals is approximately 0.14 rad/time. Therefore, the Damköhler number does not

have a discernable effect on the angular velocity of the single spiral. It appears that if the

Damköhler number is in the range within which single spirals can be sustained, the spirals

may form due to the appropriate perturbations and, the dynamics and geometry of the single

spiral are primarily functions of the velocity field as represented by the similarity variables.

a b c
Figure 4.31: Temperature contours of single spirals for φ = 2.0, Yo∞ = 0.2, H0 = 0.1,
Ts = 1.0, β = 25, Ze = 40 at a. D = 1.91, b.D = 1.88 and c.D = 1.86

62

Figure 4.32: Overlay of spirals for D = 1.90, D = 1.88 and D = 1.86

63

4.5 Double Spiral

The double spirals in figure 4.33 are for D = 1.85 at times 120, 140 and 160. As in the

case of the single spiral, the leading edge of the flame relative to the flow, is the one with

the steeper temperature gradients and the temperature contours in the zθ plane, as shown

in figures 4.34. Also, each arm of the double spiral is similar in shape to the single spiral

discussed in the previous section. However, in contrast to the single spiral, the double spiral

rotates in the same direction as the burner, and the curvature of the leading edge is concave.

These differences in the dynamics and the shape of the spirals in the xy plane is attributed

to interactions between the two arms of the spiral as depicted in the temperature contours

shown in figure 4.34, where some tip interaction is apparent. Thus, along with the Damköhler

number and the velocity profile, interactions between the spirals also affect the shape and

dynamics of these flames.

It should also be mentioned that it appears from the flame contours in figures 4.34 and

4.12 that the shape of the flame bars in the zθ plane are equivalent although there is a

curvature difference in the flame shape in the xy plane. This suggests that the mode of the

instability only affects the lateral dynamics of the flame.

64

Time=120

Time=140

Time=160

T Yf Yo
Figure 4.33: Temperature and species contours of a double spiral for φ = 2.0, Yo∞ = 0.2,
H0 = 0.1, Ts = 1.0, β = 25, Ze = 5.43 and D = 1.85 at time = 120, 140, 160

65

T Yf Yo
Figure 4.34: Temperature and species contours in the zθ plane of a double spiral for
φ = 2.0, Yo∞ = 0.2, H0 = 0.1, Ts = 1.0, β = 25, Ze = 5.43 and D = 1.85 at time = 160

66

4.6 Non-uniform Flames at a Mixture Strength Value

of 5.0

Non-uniform flames are also simulated for a pure methane burner. The parameter values

for the results in this section are, φ = 5.0, Yo∞ = 0.2, H0 = 0.05, Ts = 1.0, β = 50, and

Ze = 5.43. Figures 4.35 and 4.36 show the velocity profiles and the S-shaped response curve

for this set of parameters. The extinction point, DE, is approximately 5.56 andD∗ = 6.70. As

in the previous section, the non-uniform flames observed in this section include flame holes,

single spirals and double spirals as shown in figures 4.37, 4.38 and 4.39 respectively. The

geometry of these flames is very similar to the ones in the previous section but the dynamics

are different. The single spiral rotates clockwise at an angular velocity of 0.07 rad/time

while the double spiral rotates counterclockwise at an angular velocity of 0.75 rad/time.

Also, the range of Damköhler numbers within which the instabilities occur is larger. This

suggests that the injection velocity and the mixture strength affect the range of Damköhler

numbers within which the non-uniform flames appear.

67

Figure 4.35: Non-dimensional Velocities

Figure 4.36: S-shaped Response

68

Figure 4.37: Temperature contour of a flame hole for φ = 5.0, Yo∞ = 0.2, H0 = 0.1,
Ts = 1.0, fβ = 50, Ze = 5.43 and D = 6.7

Figure 4.38: Temperature contour of a single spiral for φ = 5.0, Yo∞ = 0.2, H0 = 0.1,
Ts = 1.0, fβ = 50, Ze = 5.43 and D = 6.6

69

Figure 4.39: Temperature contour of a double spiral for φ = 5.0, Yo∞ = 0.2, H0 = 0.1,
Ts = 1.0, β = 50, Ze = 5.43 and D = 6.2

70

4.7 Effect of Parameters of Study on the Stability of

the System

In the previous sections it has been shown that the Damköhler number is the crucial paramter

affecting the stability of the system. However, other factors such as boundary conditions are

also expected to have an effect, especially in terms of the range of Damköhler numbers within

which non-uniform flames can be sustained. This is demonstrated in table 4.2 where the

extinction Damköhler numbers are reported for four different parameter combinations. Here

the heat release parameter is adjusted to fix the Burke-Schumann flame temperature. These

values suggest that the injection velocity and the mixture strength have a considerable effect

on the stability of the system while the effect of the temperature at the burner exit is small

in comparison. Increasing the mixture strength leads to a shrinkage of the range whereas an

increase in the injection velocity leads to an expansion. The trend in terms of the mixture

strength is opposite to that observed by Kukuck and Matalon [18] for planar oscillations

in diffusion flames. In the case of the spinning burner, an increase in the mixture strength

leads to a shifting of the height of stoichiometry away from the burner surface to a region

where the radial and angular velocities are lower in magnitude since the velocity profile

remains unchanged. This reduction in the velocities in the vicinity of the flame sheet may

have a stabilizing effect and so the Damköhler number range for instability is significantly

reduced. An increase in the injection velocity, on the other hand, results in both a shift in

the stoichiometric height and velocity profile. This dual change may be the cause of the

expansion of the range.

71

Case H0 φ Ts DE D∗ DE/D
∗

1 0.10 2.0 1.0 1.48 1.96 0.76

2 0.10 2.0 1.4 1.46 1.95 0.75

3 0.10 5.0 1.0 1.78 1.87 0.95

4 0.05 5.0 1.0 5.25 6.32 0.83

Table 4.2: Effect of Parameters of Study on D∗.

72

4.8 Scalar and Cross Scalar Dissipation Rates of the

Non-uniform Flames

The formation of flame patterns in the Von Karman boundary layer may have important

implications for modeling turbulent flames, especially in terms of non-premixed and partially

premixed turbulent combustion. Currently, turbulence models do not explicitly account for

local vortices within a turbulent mixing layer. Flames in the vicinity of localized vortices

may exhibit behavior similar to the flames in the boundary layer of a spinning burner. Thus

it may be necessary to incorporate such behavior into existing turbulence models.

In turbulence modeling it is necessary to derive relationships between parameters such

as a conserved scalar, that is not depleted by chemical reactions, and the reaction rate. The

dissipation of the conserved scalar is a popular choice. In turbulent flames the conditional

expectation of the dissipation of a conserved scalar, conditioned upon the value of the scalar,

is proportional to the mean reaction rates [34]. Bilger [35] gives a relationship between the

dissipation of a conserved scalar and the reaction rate valid in the fast chemistry limit,

wi =
1

2
ρχ
∂2Y e

i

∂Z2
. (4.11)

Although this model is only valid in the fast chemistry limit, dependencies like these are

important and it is pertinent to derive similar relationships beyond the fast chemistry limit.

Investigating the scalar dissipation profiles of the non-uniform flames which are typically a

consequence of finite rate chemistry may provide some insight into expanding the scope of

turbulence models. Thus, in this section, correlations between the dissipation of a conserved

scalar and the flame patterns in the Von Karman boundary layer is explored.

73

The conserved scalars mentioned above are typically derived either from linear combi-

nations of the species equations by elimination of the reaction rate term, or from elemental

conservation. Linear relationships exist between all such conserved scalars if all the diffusiv-

ities are equal and there are two uniform reactant feeding streams [34],[36]. However, when

the scalars are not linearly related the choice of the conserved scalar is dependent upon the

particular problem.

The mixture fraction, a conserved scalar, is often utilized in the description of non-

premixed combustion to determine the flame surface [37]. The expression for the mixture

fraction is derived from the species governing equations by eliminating the reaction terms.

For a reaction given by,

ν ′FCmHn + ν ′O2
O2 → ν ′′CO2

CO2 + ν ′′H2O
H2O

the mixture fraction is

Z =
νYF − YO2 + YO2,2

νYF,1 + YO2,2

, (4.12)

where, ν = ν ′O2
WO2/νFWF , the Wis are the molecular weights and the subscripts 1 and 2

represent values at the fuel supply and oxidizer boundaries respectively. The species mass

fractions at the boundaries serve to normalize the mixture fraction so that it has a value of

1 at the fuel boundary and 0 at the oxidizer boundary. The stoichiometric mixture fraction

is given by,

Zst =

[
1 +

νYF,1
YO2,2

]−1

. (4.13)

In non-premixed combustion

Z(~x, t) = Zst (4.14)

74

is used to define the flame surface [37]. Steady combustion is achieved when a balance exists

between the chemical heat release and the heat dissipated away from the stoichiometric

surface by diffusion and convection. The effects of finite rate chemistry become evident

when such a balance does not exist [38]. Hence it is helpful to define a diffusive time

τχ ≈ χ−1
s (4.15)

where χs is the scalar dissipation rate at the stoichiometric surface. The scalar dissipation

rate represents a diffusion time scale imposed by the mixing field and is given by

χ = 2D∇Z.∇Z, (4.16)

where Z is the conserved scalar. Flame quenching occurs when the value of the instantaneous

scalar dissipation rate exceeds a threshold, χq. The value of χq is obtained from the solution

of one-dimensional steady strained diffusion flames and is used as a reference point for

quenching in turbulent combustion modeling [38]. It is important to note that simulation

results of Favier and Vervisch [38] indicate that the scalar dissipation rate needed to initiate

quenching is higher than that necessary to maintain or propagate a quenched zone.

Another important factor that needs to be considered is the increase in the product

of the reactant mass fractions in the regions bordering the quenched zones [38]. Under

stoichiometric conditions this suggests that the flame itself may be a combination of partially

premixed and non-premixed regions. Thus, it is useful to identify premixed regions so as

to fully understand the structure of the flame and the quenching mechanism. The cross

scalar dissipation rate is a parameter that may be used to distinguish between premixed and

diffusion flames [38],[39]. The cross scalar dissipation rate

χc = 2D∇Yf .∇Yo (4.17)

75

is positive for a premixed flame and negative for a diffusion flame [38].

Figures 4.40-4.42 show the contours of the instantaneous scalar dissipation rates, and

the cross scalar dissipation rates for a flame hole, a single spiral and a double spiral, in the

xy plane. These contours are at the plane where the mass fractions are in stoichiometric

proportions. It is evident from these figures that the instantaneous scalar dissipation rate

is generally higher in the regions where quenching has occurred. In comparison to the

temperature contours, in the quenched regions, the scalar dissipation rate has a value higher

than 0.00435 for all three flames. Another interesting characteristic that is common among

the flames is that regions of premixing, as indicated by positive values of χc are thin and

are limited to regions bordering those with low scalar dissipation rates. With respect to the

temperature contours these premixed regions are in areas where the temperature transitions

rapidly from hot to cold values.

The curvatures of the contours of both the scalar dissipation and the cross scalar dissi-

pation rates are similar to those of the temperature. It is also important to note that the

maximum positive value of the cross scalar dissipation rate is higher in the case of the single

spiral than that for the flame hole or the double spiral. This may be attributed to the higher

angular velocity with which the single spiral rotates about the axis of the burner.

The contours of the scalar dissipation and the cross-scalar dissipation provide insight in

terms of the structure of the flame and their relationship to the dissipation away from the

stoichiometric surface. In other words, the chemical reaction in the quenched regions is not

sufficient to balance the dissipation away from the stoichiometric plane. This leads to flame

extinction because the Damköhler number at which these flame patterns are observed are

76

a. T b. χ c.χc
Figure 4.40: Temperature, scalar and cross scalar contours in the xy plane of a flame hole
for φ = 2.0, Yo∞ = 0.2, H0 = 0.1, Ts = 1.0, β = 25, Ze = 5.43 and D = 1.95

a. T b. χ c.χc
Figure 4.41: Temperature, scalar and cross scalar contours in the xy plane of a single spiral
for φ = 2.0, Yo∞ = 0.2, H0 = 0.1, Ts = 1.0, β = 25, Ze = 5.43 and D = 1.9

a. T b. χ c.χc
Figure 4.42: Temperature, scalar and cross scalar contours in the xy plane of a double
spiral for φ = 2.0, Yo∞ = 0.2, H0 = 0.1, Ts = 1.0, β = 25, Ze = 5.43 and D = 1.85

77

low enough such that finite rate chemistry can be expected. The largest Damköhler number

at which a flame pattern can be sustained could thus be considered as the transition point

where the chemistry is no longer infinitely fast.

Within the range of finite chemistry, however, several distinct flame patterns have been

observed. These flame patterns are both functions of the nature of the perturbation and

the Damköhler number. The scalar and cross scalar dissipation, however, do not provide

much information about the dynamics of these flames. Therefore, it may be necessary to

include other pertinent parameters in models for representing the effect of localized vortices

in turbulent combustion. So further analysis is necessary to ascertain the driving factor for

the dynamics of the flame patterns observed in this study.

78

4.9 Conclusion

In this study a simple model is utilized to gain some insights into the stability of diffusion

flames supported by a spinning porous plug methane burner. The evolution of the flame

holes and spirals indicate that diffusion flames supported by the rotating porous plug burner

become unstable at near extinction Damköhler numbers on the upper branch of the S-

response curve. It is shown that these multidimensional instabilities are thermo-diffusional

in nature. The flames have three-dimensional characteristics and the spirals are dynamic

in nature. They rotate about the axis of the burner and the single-armed spiral rotates

clockwise while the double-armed spiral rotates counter clockwise. The primary factors

affecting the shape and dynamics of the spirals are identified as the velocity field and the

interaction between spiral flames. It is also found that the mixture strength and the injection

velocity have a significant effect on the range of Damköhler numbers within which the system

is prone to instability.

79

Appendix A

Nondimensionalizing the Governing

Equations

Continuity

∂ρ

∂t
+

1

r∗
∂(ρr∗u)

∂r∗
+

1

r∗
∂(ρv)

∂θ
+
∂(ρw)

∂z∗
= 0 (A.1)

For steady flow with radial symmetry,

1

r∗
∂(ρr∗u)

∂r∗
+
∂(ρw)

∂z∗
= 0 (A.2)

For constant density,

1

r∗
∂(r∗u)

∂r∗
+
∂(w)

∂z∗
= 0 (A.3)

Using nondimensional variables:

r =

√
b∗

ν∞
r∗, z =

√
b∗

ν∞
z∗, T =

T

T∞
, Yi =

Yi
Yf0

80

where, b∗ is the angular velocity of the burner.

We seek a similarity solution of the form:

u = b∗r∗F, v = b∗r∗G, w =
√
b∗ν∞H, p = ρb∗ν∞P

where F, G, H and P are functions of z.

Non-dimensionalizing the equation we get,

1

r
b∗rF + b∗F + b∗r

∂F

∂r
+

∂

∂z

√
b∗ν∞

√
b∗

ν∞
H = 0

→ 2F +H ′ = 0

(A.5)

81

Momentum

r-Momentum:

Incompressible flow with constant transport properties,

ρ

(
∂u

∂t
+ u

∂u

∂r∗
+
v

r∗
∂u

∂θ
− v2

r∗
+ w

∂u

∂z∗

)
= − ∂p

∂r∗
+ µ

[
∂

∂r∗

(
1

r∗
∂(r∗u)

∂r∗

)
+

1

r∗2
∂2u

∂θ2
− 2

r∗2
∂v

∂θ
+
∂2u

∂z∗2

]
(A.6)

Using the steady equation with radial symmetry,

u
∂u

∂r∗
− v2

r∗
+ w

∂u

∂z∗
= − ∂p

∂r∗
+ ν∞

[
∂

∂r∗

(
1

r∗
∂r∗u

∂r∗

)
+
∂2u

∂z∗2

]
(A.7)

Using the similarity variables defined in Equation A:

b∗2r∗F 2 + b∗2r∗HF ′ − b∗2r∗G2 +
b∗F

r∗
− b∗F

r∗
= ν∞

b∗2r∗F ′′

ν∞

∴ F ′′ = F 2 + F ′H −G2

(A.8)

θ-Momentum: Steady equation with radial symmetry,

ρ

(
u
∂v

∂r∗
− w ∂v

∂z∗
+

1

r∗
uv

)
= µ

[
∂2

∂r∗

(
1

r∗
∂r∗u

∂r∗

)
+
∂2u

∂z∗2

]
(A.9)

Using similarity variables defined in Equation A:

r∗b∗FG+ b∗r∗HG′ + b∗r∗FG = ν∞

(
b∗G

r∗
− b∗G

r∗
+
b∗r∗

ν∞
G′′
)

∴ G′′ = 2FG+HG′

(A.10)

82

z-Momentum: Steady equation with radial symmetry,

ρ

(
u
∂w

∂r∗
− w ∂w

∂z∗

)
= − ∂p

∂z∗
+ µ

[
1

r∗
∂

∂r∗

(
r∗
∂w

∂r∗

)
+
∂2w

∂z∗2

]
(A.11)

Using similarity variables defined in Equation A:

b∗
√
b∗ν∞HH

′ =
1

ρ

[
−ρb∗

√
b∗ν∞P

′ + b∗
√
b∗ν∞H

′′
]

→ H ′′ −HH ′ − P ′ = 0

∴ 2HF − 2F ′ = P ′

(A.12)

83

Energy Equation

ρCp

(
∂T

∂t
+ u

∂T

∂r∗
+
v

r∗
∂T

∂θ
+ w

∂T

∂z∗

)
−
(
∂P

∂t
+ u

∂P

∂r∗
+
v

r∗
∂P

∂θ
+ w

∂P

∂z∗

)
−λ
[

1

r∗
∂

∂r∗

(
r∗
∂T

∂r∗

)
+

1

r∗2
∂2T

∂θ2
+
∂2T

∂z∗2

]
= −

∑
ωi∆h, i

− 1

r∗

[
∂

∂r∗

(
r∗ρT

∑
CpiYiV ir

∗
)

+
∂

∂θ

(
ρT
∑

CpiYiV iθ
)

+
∂

∂z∗

(
ρT
∑

CpiYiV iz
∗
)]

+2

[(
∂u

∂r∗

2)
+

(
1

r∗
∂v

∂θ
+
u

r∗

)2

+

(
∂w

∂z∗

)2
]

+

[
r∗

∂

∂r∗

(v
r∗

)
+

1

r∗
∂u

∂θ

]2

+

[
1

r∗
∂w

∂θ
+
∂v

∂v
∂z∗
]

+

[
∂u

∂z∗
+
∂w

∂r∗

]2

− 2

3

[
1

r∗
∂

∂r∗
(r∗u) +

1

r∗
∂v

∂θ
+
∂w

∂z∗

]2

(A.13)

For low mach number flows:

ρCp

(
∂T

∂t
+ u

∂T

∂r∗
+
v

r∗
∂T

∂θ
+ w

∂T

∂z∗

)
− λ

(
1

r∗
∂T

∂r∗
+
∂2T

∂r∗2
+

1

r∗2
∂2T

∂θ2
+
∂2T

∂z∗2

)
= QΩ (A.14)

Nondimensionalizing,

∂T

∂τ
+ rF

∂T

∂r
+G

∂T

∂θ
+H

∂T

∂z
− 1

Pr

(
1

r

∂T

∂r
+
∂2T

∂r2
+

1

r2

∂2T

∂θ2
+
∂2T

∂z2

)
= Ω (A.15)

84

Species Equation

ρ

(
∂Yi
∂t

+ u
∂Yi
∂r∗

+
v

r∗
∂Yi
∂θ

+ w
∂Yi
∂z∗

)
+

1

r∗
∂

∂r∗
(r∗ρYiVir)+

1

r∗
∂

∂θ
(ρYiViθ)+

∂

∂z∗
(ρYiViz∗) = −αiΩ

(A.16)

where,

Vir∗ = −D
Yi

∂Yi
∂r∗

, Viθ = − D

Yir

∂Yi
∂θ

, Viz∗ = −D
Yi

∂Yi
∂z∗

Simplifying,

→ ρ

(
∂Yi
∂t

+ u
∂Yi
∂r∗

+
v

r∗
∂Yi
∂θ

+ w
∂Yi
∂z∗

)
− ρD

(
∂2Yi
∂r∗2

+
1

r∗
∂Yi
∂r∗

+
1

r∗2
∂2Yi
∂θ2

+
∂2Yi
∂z2

)
= −αiΩ

(A.18)

Nondimensionalizing,

∂Y i

∂τ
+ rF

∂Y i

∂r
+G

∂Y i

∂θ
+H

∂Y i

∂z
− 1

Sci

(
1

r

∂Y i

∂r
+
∂2Y i

∂r2
+

1

r2

∂2Y i

∂θ2
+
∂2Y i

∂z2

)
= −αiΩ (A.19)

85

Appendix B

Code Verification

B.0.1 Grid Refinement Study

This section summarizes the results from the grid refinement study conducted to verify that

the centered difference derivative routines being used in this study are fourth order accurate.

For this grid refinement study, derivatives of some common functions are computed using

the fourth order scheme. An average error is then calculated over all grid points according

to

L2 =
1

n

∑√
(fexact − fnumerical)2, (B.1)

where n is the total number of grid points. This error is computed for a grid with grid re-

finement ratio of 2 between successive grids. The order of grid convergence is then computed

E = L2 = Chp +Higher order terms, (B.2)

where h is the grid spacing, C a constant and p is the order of convergence. If the higher

order terms are neglected, and a logarithm is taken,

Ln(E) = Ln(C) + pLn(h), (B.3)

86

Figure B.1: Order of Grid Convergence

then the order of convergence is the slope of the plot of Ln(E) versus Ln(h). Figure B.1 is a

plot of equation B.3 for several grids. The grids used for the study are listed in the legend.

The solid line is a trend line derived using a least squares method. The slope of the trendline

is also listed in the legend. As seen from the figure, the slope of the least squares fit curve

is 4.4. Also, the average value of p obtained considering,

E1 = Chp1 (B.4)

E2 = Chp2 (B.5)

where, h2 = h1/2 (B.6)

→ E1

E2

=

(
h1

h1/2

)p
= 2p (B.7)

→ p =
ln(E1/E2)

ln 2
(B.8)

is p = 4.52. Thus, the derivative routines being used are fourth order accurate.

87

B.0.2 Benchmark Studies

In this section the solutions to some simple problems are summarized in order to validate the

solver. In all these problems the initial and boundary conditions are stated and the steady

state solutions are obtained using the solver developed for the current study.

Benchmark Problem 1

The first problem consists of a simple three-dimensional second order partial differential

equation. This problem is used to verify that the basic functions of the solver are imple-

mented properly.

T ′ = Tx1x1 + Tx2x2 + Tx3x3 (B.9)

This parabolic partial differential equation has the exact solution

T = 1 + e−3t(sin(x1)sin(x2)sin(x3)). (B.10)

At steady state the temperature converges to a value of 1.0 as the exponential term decays

to 0. This partial differential equation is solved in the domain

0 < x1 < 2π 0 < x2 < 2π 0 < x3 < 2π.

and the initial conditions are calculated using equation B.10 with t=0,

T (0, x1, x2, x3) = 1 + sin(x1)sin(x2)sin(x3), (B.11)

while the six boundaries are set to unity.

T (t, 0, x2, x3) = 1.0 T (t, 2π, x2, x3) = 1.0

T (t, x1, 0, x3) = 1.0 T (t, x1, 2π, x3) = 1.0 (B.12)

T (t, x1, x2, 0) = 1.0 T (t, x1, x2, 2π) = 1.0

88

Figures B.2 and B.3 show the relative percentage error for the solution for a 16 cubed and

a 32 cubed grid. As seen from this figure, the relative error is very small at steady state.

This indicates that the code is capable of solving the above three dimensional system with

a relative error of 0.003% for a 32 cubed grid.

0 1000 2000 3000 4000 5000
0

0.05

0.1

0.15

0.2

0.25
A

ve
ra

ge
 R

el
at

iv
e

E
rr

or
 (

%
)

Number of Time steps

Figure B.2: Benchmark Problem 1, Grid=16 cubed

Benchmark Problem 2

This problem is considered to ensure that the boundary conditions are applied appropriately

for a problem in cylindrical coordinates, where the reciprocal of r appears as a coefficient

to one of the derivative terms. This, if not dealt with appropriately, causes a singularity at

r = 0. Here, the variables in the runge kutta iteration are computed from r = 0 to r = n−1

and the boundary condition is applied at these points. The problem is given by

Tt =
1

4

[
1

r

∂T

∂r
+
∂2T

∂r2

]
+Q, (B.13)

89

0 1000 2000 3000 4000 5000
0

1

2

3

4

5

6

7

8

9
x 10

−3

A
ve

ra
ge

 R
el

at
iv

e
E

rr
or

 (
%

)

Number of Time steps

Figure B.3: Benchmark Problem 1, Grid = 32 cubed

where the source term is

Q = −0.0001r2e−0.01r2

e−0.01t. (B.14)

The boundary conditions are

∂T

∂r
(t, 0) = 0.0 and

∂T

∂r
(t, 40) = 0. (B.15)

For this equation, the exact solution of T is

T = e−0.01r2

e−0.01t. (B.16)

Figure B.4 shows the temperature profile after 5000 time steps from the numerical and exact

solutions. Figure B.5 shows the absolute error at each r location, and as seen here the errors

are very small. These plots show that the boundary conditions are applied appropriately

and that the code is able to solve problems in cylindrical coordinates.

90

Figure B.4: Temperature Profile for Benchmark Problem 2

Benchmark Problem 3

The third problem involves solving simulataneously, partial differential equations for the

species and the temperature. The governing equations are

Tt = λ1(uTx1x1 + vTx2x2 + wTx3x3)− β(Tx1 + Tx2 + Tx3) +Q1, (B.17)

Yt = λ2(Yx1x1 + Yx2x2 + Yx3x3)−Q1T +Q2. (B.18)

The boundary conditions are

T (t, 0, x2, x3) = 1.0 T (t, 2π, x2, x3) = 1.0,

T (t, x1, 0, x3) = 1.0 T (t, x1, 2π, x3) = 1.0,

T (t, x1, x2, 0) = 1.0 T (t, x1, x2, 2π) = 1.0,

Y (t, 0, x2, x3) = 1.0 Y (t, 2π, x2, x3) = 1.0,

Y (t, x1, 0, x3) = 1.0 Y (t, x1, 2π, x3) = 1.0,

Y (t, x1, x2, 0) = 1.0 Y (t, x1, x2, 2π) = 1.0,

91

Figure B.5: Error for Benchmark Problem 2

and u = v = w = 1.0 for all grid points. If the exact solutions of T and Y are taken as

T = 1 + e−3t(sin(x1)sin(x2)sin(x3)), (B.19)

Y = 1 + e−3t(sin(x1)sin(x2)sin(x3)), (B.20)

and if λ1 = 1 the value of Q1 is

Q1 = β(Tx1 + Tx2 + Tx3). (B.21)

The value of Q2 is

Q2 = Q1T. (B.22)

Figures B.6 and B.7 show the differences between the computed and analytical solutions,

for the temperature and species respectively. These results show that after 2000 time steps

the difference between the analytical results and the computed results is less that 0.01%.

92

0 500 1000 1500 2000 2500
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

A
ve

ra
ge

 R
el

at
iv

e
E

rr
or

 (
%

)

Number of Time steps

Figure B.6: Benchmark Problem 3, Error in the Temperature, Grid = 16 cubed

0 500 1000 1500 2000 2500
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

A
ve

ra
ge

 R
el

at
iv

e
E

rr
or

 (
%

)

Number of Time steps

Figure B.7: Benchmark Problem 3, Error in the Species, Grid = 16 cubed

93

Appendix C

Normal Mode Analysis

The stability of the system is examined using a numerical normal mode analysis. The

perturbed solutions are defined as

F (z)

G(z)

H(z)

T (r, θ, z, t)

Yf (r, θ, z, t)

Yo(r, θ, z, t)

=

F (z)

G(z)

H(z)

Tss(z)

Yfss(z)

Yoss(z)

+

0

0

0

T̂ (z)

ˆYf (z)

Ŷo(z)

Arkeωτ+ikθ, (C.1)

where, Tss(z), Yfss(z), and Yoss(z) are the 1-dimensional steady state solutions, ω is the

growth rate and k is the wavenumber. Detailed derivation of the separated form is included

in the appendix. Upon substituting the above perturbed solutions into the field equations

94

and linearizing, equations for T̂ (z), Ŷf (z), and Ŷo(z) are obtained

ωT̂ + kF T̂ + ikGT̂ +HT̂ ′ − T̂ ′′ = βΩ̂, (C.2)

ωŶf + kF Ŷf + ikGŶf +HŶ ′f − Ŷ ′′f /Lef = αf Ω̂, (C.3)

ωŶo + kF Ŷo + ikGŶo +HŶ ′o − Ŷ ′′o /Leo = αoΩ̂, (C.4)

where,

Ω̂ = DDe−Ze/Tss(YossŶf + YfssŶo + YfssYossZeT̂T
−2
ss). (C.5)

The boundary conditions for the linearized system are

T̂ (0) = 0, Ŷ ′o(0) = PeLeoŶo(0), Ŷ ′f (0) = PeLef Ŷf (0), (C.6)

T̂ (∞) = 0, Ŷo(∞) = 0, and Ŷf (∞) = 0. (C.7)

When discretized, equations C.2-C.7 define a matrix eigenvalue problem of the form

(A + ωB)
−→
X = 0, (C.8)

95

where A is

1 0 0 0 0 0 0 0 0 − 0

0 3
2∆z

+PeLeo 0 0 − 4
2∆z

0 0 1
2∆z

0 − 0

0 0 3
2∆z

+PeLef 0 0 − 4
2∆z

0 0 1
2∆z

− 0

Π1 0 0 Γ11 DDe−ZeT
−1
ss1Yf1 DDe−ZeT

−1
ss1Yo1 Π1 0 − − 0

0 Π2 0 Λ1 Γ21 DDe−ZeT
−1
ss1Yo1 0 Π2 0 − 0

0 0 Π3 Λ1 DDe−ZeT
−1
ss1Yf1 Γ31 0 0 Π3 − 0

| | | | | | | | | | |

| | | | | | | | | | |

| | | | | | | | | | |

| | | | | | | | 1 0 0

| | | | | | | | 0 1 0

| | | | | | | | 0 0 1

(C.9)

where,

Π1 = H/2∆z + 1/∆z2, Π1 = −H/2∆z + 1/∆z2,

Π2 = H/2∆z + 1/Lef∆z
2, Π2 = −H/2∆z + 1/Lef∆z

2,

Π3 = H/2∆z + 1/Leo∆z
2, Π3 = −H/2∆z + 1/Leo∆z

2,

Λj = DDYossjYfssjZeT
−2
ssj ,

Γ1j = −kFssj − ikGssj − 2∆z−2 + βYfssjYossjDDe
−ZeT−1

ssjZeT−2
ssj ,

Γ2j = −kFssj − ikGssj − 2∆z−2 + αfYossjDDe
−ZeT−1

ssj , (C.10)

Γ3j = −kFssj − ikGssj − 2∆z−2 + αoYfssjDDe
−ZeT−1

ssj .

96

B is given by,

B(i, i) = 1, for i = 4, to i = 3N − 3,

B(i, i) = 0, for i = 1, 3N − 2, 3N − 1, 3N,

B(i, j) = 0, for i, 6= j

and

−→
X T =

[
T0 Yo0 Yf0 T1 Yo1 Yf1 T2 Yo2 Yf2 − − − − TN YoN YfN

]
.

(C.11)

Here, N , is the total number of grid pts used in the discretization. Figure C.1 shows the pro-

gression of the largest eigenvalue from stable (< 0) to unstable (> 0) values, for wavenumbers

of 1 to 7, N = 50. As seen from this figure, at high Damköhler numbers the largest eigenvalue

for all the modes asymptotes to a negative value. As the Damköhler number decreases the

eigenvalue transitions from this stable branch to an unstable one. The Damköhler number

at which this transition occurs decreases as the wavenumber increases. Table C shows the

Damköhler numbers for which the system becomes unstable alongside the Damköhler num-

bers that are observed in the three-dimensional simulations for a 643 grid. The extinction

Damköhler number for this problem is DE = 1.46

97

Figure C.1: The first eigenvalue as a function of D for several k’s, N = 50

k D(N = 50) D(N = 100) D(3-D, 643 Grid)

1 1.845 1.82 1.90

2 1.806 1.79 1.85

3 1.748 1.74 -

4 1.678 1.67 -

5 1.620 1.61 -

6 1.572 1.56 -

7 1.531 1.49 -

Table C.1: Transition Damköhler Numbers from the eigenvalue problem and from 3-D
simulations for k = 1 to k = 7

98

Appendix D

Eigenvalue Problem: Separation of

Variables

The non-dimensional system is given by,

F =
u

b0r
, G =

v

b0r
, H =

w√
b0ν

, (D.1)

where F, G, H are functions of z. The resulting non-dimensional equations are

H ′ = −2F, (D.2)

F ′′ = F 2 + F ′H −G2, (D.3)

G′′ = 2FG+HG′, (D.4)

P ′ = 2HF − 2F ′. (D.5)

F (0) = 0, G(0) = G0 = 1, H(0) = H0, P (0) = 0,

F (∞) = 0, G(∞) = 0. (D.6)

99

L[T, Yi]−M [Pr−1T, Pr−1LeiYi] = Ω[β,−αi], (D.7)

where

L =
∂

∂t
+ rF

∂

∂r
+G

∂

∂θ
+H

∂

∂z
,

M =
1

r

∂

∂r
+

∂2

∂r2
+

1

r2

∂

∂θ2
+

∂2

∂z2
.

The boundary conditions are,

z = 0 : T0 = Ts,
∂Yf
∂z

= H0PrLef (Yf − 1),
∂Yo
∂z

= H0PrLeoYo,

z =∞ : T∞ = 1, Yf = 0, Yo = φ−1,

r = 0 :
∂T

∂r
= 0,

∂Yi
∂r

= 0, r =∞ :
∂T

∂r
= 0,

∂Yi
∂r

= 0,

T |θ=0 = T |θ=2π, Yi|θ=0 = Yi|θ=2π,
∂T

∂θ
|θ=0 =

∂T

∂θ
|θ=2π,

∂Yi
∂θ
|θ=0 =

∂Yi
∂θ
|θ=2π.

The perturbed solutions are defined as

F (z)

G(z)

H(z)

T (r, θ, z, t)

Yf (r, θ, z, t)

Yo(r, θ, z, t)

=

F (z)

G(z)

H(z)

Tss(z)

Yfss(z)

Yoss(z)

+

0

0

0

T̃ (r, θ, z, t)

Ỹf (r, θ, z, t)

Ỹo(r, θ, z, t)

, (D.9)

where, Tss(z), Yfss(z), and Yoss(z) are the 1-dimensional steady state solutions. From these

equations it is evident that t and θ are readily separable if the perturbations are taken to be

of the form
T̃ (r, θ, z, t)

Ỹf (r, θ, z, t)

Ỹo(r, θ, z, t)

 =

Ť (r, z)

Y̌f (r, z)

Y̌o(r, z)

 e
ωt+ikθ. (D.10)

100

The resulting equations are

ωŤ + rF Ťr + ikGŤ +HŤz =
(
Ťr/r + Ťrr − k2Ť /r2 + Ťzz

)
+ βΩ̌, (D.11)

ωY̌f + rF Y̌fr + ikGY̌f +HY̌fz = 1/Lef
(
Y̌fr/r + Y̌frr − k2Y̌f/r

2 + Y̌fzz
)
− αf Ω̌, (D.12)

ωY̌o + rF Y̌or + ikGY̌o +HY̌oz = 1/Leo
(
Y̌or/r + Y̌orr − k2Y̌o/r

2 + Y̌ozz
)
− αoΩ̌, (D.13)

where, Ω̌ = DDe−Ze/Tss
(
YossY̌f + YfssY̌o + YfssYossZeŤ/T

2
ss

)
. Now, taking the perturbations

as
Ť (r, z)

Y̌f (r, z)

Y̌o(r, z)

 =

R(r)T̂ (z)

R(r)Ŷf (z)

R(r)Ŷo(z)

 , (D.14)

the equation for Ť becomes

ω + ikG+HT̂ ′/T̂ − T̂ ′′/T̂ + βΩ̂ = R′′/R +R′/(rR)− rFR′/R− k2/r2. (D.15)

In order for the above equation to be separable, rR′/R has to be a constant because F =

F (z).Thus,

rR′/R = const (D.16)

→ R = Arα. (D.17)

Thus,

ω + ikG+HT̂ ′/T̂ − T̂ ′′/T̂ + αF + βΩ̂ = α(α− 1)rα−2/rα + αrα−1/(rrα)− k2/r2. (D.18)

The right hand side of the above equation must equal a constant. Thus,

α2/r2 − k2/r2 = const. (D.19)

101

Since α and k are constants, for equation D.19 to be true for all r, the constant must be

zero, and so,

α = ±k (D.20)

and the equations for T̂ , Ŷf and Ŷo are

ωT̂ + kF T̂ + ikGT̂ +HT̂z + T̂zz − βΩ̂ = 0, (D.21)

ωŶf + kF Ŷf + ikGŶf +HŶfz + 1/Lef Ŷfzz + αf Ω̂ = 0, (D.22)

ωŶo + kF Ŷo + ikGŶo +HŶoz + 1/LeoŶozz + αoΩ̂ = 0, (D.23)

where, Ω̂ = DDe−Ze/Tss
(
YossŶf + YfssŶo + YfssYossZeT̂/T

2
ss

)
. Thus,

Ť (r, θ, z, t) =
∞∑
k=0

Akr
+kT̂ (z)eωt+ikθ, (D.24)

Y̌f (r, θ, z, t) =
∞∑
k=0

Akr
+kŶf (z)eωt+ikθ, (D.25)

Y̌o(r, θ, z, t) =
∞∑
k=0

Akr
+kŶo(z)eωt+ikθ. (D.26)

To satisfy the boundary condition, ∂[Ť , Y̌i]/∂r = 0 as r →∞,

∞∑
k=0

kAkr
k−1[T̂ (z), Ŷi(z)]eikθ = 0, (D.27)

and so
∞∑
k=0

kAkr
keikθ = 0. (D.28)

This condition dictates that the coefficients Ak be such that r →∞ be included in the region

of convergence for
∑∞

k=0 kAkr
keikθ. Now, since k ≥ 0, it follows that |Akrkeikθ| ≤ |kAkrkeikθ|.

Thus, from the theorems that if
∑
|un| converges and |vn| ≤ |un|, then

∑
|vn| converges,

and if
∑
|un| converges, then

∑
un converges, (where

∑
un =

∑∞
n=1 un = u1 + u2......),

102

∑∞
k=0 Akr

keikθ should converge as r →∞.

Upon discretization using following expressions for the first and second derivatives at the

interior and boundary points

dXj

dz
= (Xj+1 −Xj−1)/(2∆z), (D.29)

d2Xj

dz2 = (Xj+1 − 2Xi +Xj−1)/(∆z)2, (D.30)

dX0
dz

= (−3X0 + 4X1 −X2)/(2∆z), (D.31)

dXN
dz

= (−3XN + 4XN−1 −XN−2)/(2∆z), (D.32)

the temperature eqation becomes,

ωT̂j = T̂j(−kF − ikG+DDe−Ze/TssYfssYoss − 2/(∆z)2)

+T̂j−1{H/(2∆z) + 1/(∆z)2} (D.33)

+T̂j+1{−H/(2∆z) + 1/(∆z)2}

+DDe−Ze/Tss(YossŶf + YfssŶo).

Similarly, discretized equations for the species and boundary conditions are found and the

resulting system is given by equation C.8.

103

Appendix E

Source Code

Makefile

SHELL = /bin/sh
.SUFFIXES: .o .f90 .f

OSTYPE = $(shell uname)

EXEC = vkcf

OBJS = vk colsys.o dcolsys.o vkvar.o vkpar.o vk in.o\
gen grid.o der ord 4 2.o grid map.o func def.o\
vk cf.o vkcf driver.o\ 10

MX = mod
CD = \cd
LN = ln −sf
RM = rm −f
ECHO = echo

#−−−−−−−−−−−−−−−−− options for Blue Horizon (San Diego) 20

CXX = g++
F90C = mpif90
F77C = mpif77
F90FLAGS = −qsuffix=f=f90 −qinitauto −qthreaded −qtune=auto
F77FLAGS = −O3 −Q −qinitauto −qthreaded −qstrict −qtune=auto −qzerosize
LD = $(F90C)
LDFLAGS = −bind at load
LDLIBS = −lpmpich −lmpich −lmpe

30

all : note run

104

note:
$(ECHO) "Building $(EXEC) on a $(OSTYPE) system. $(F90C)"
−$(RM) $(EXEC)

$(EXEC): $(OBJS)
$(LD) $(LDFLAGS) $(F90FLAGS) −o $(EXEC) $(OBJS) $(LDLIBS)

run : $(EXEC) 40

seq :
−$(CD) orig code;$(MAKE)

#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− dependencies
vk colsys.o: vk colsys.f dcolsys.o
dcolsys.o: dcolsys.f
vkvar.o: vkvar.f90
vk in.o: vk in.f90 vkvar.o
vkpar.o: vkpar.f90 vkvar.o vk in.o 50

gen grid.o: gen grid.f90 vkvar.o
der ord 4 2.o: der ord 4 2.f90 vkvar.o
grid map.o: grid map.f90 der ord 4 2.o
func def.o: func def.f90 vkvar.o
vk cf.o: vk cf.f90 vkvar.o vkpar.o der ord 4 2.o
vkcf driver.o: vkcf driver.f90 vkvar.o vk in.o gen grid.o der ord 4 2.o grid map.o func def.o vk cf.o vkpar.o

#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− implicit rules
%.o: %.f90

$(F90C) −c $(F90FLAGS) $< 60

%.o: %.f
$(F77C) −c $(F77FLAGS) $<

.C.o :
$(CXX) −c $(OFLAGS) $<

###%.o: %.f90
$(F90C) −c $(F90FLAGS) $< −o $@
###%.o: %.f
$(F77) −c $(FFLAGS) $< −o $@
#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− clean

70

new : clean note run

clean: runclean
−$(RM) −f *˜ *.o *.mod *.s $(EXEC)

runclean:
−$(RM) −f core fort.* $(EXEC)

#−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Driver

PROGRAM vk
!

105

!===
! This is the top level driver for the parallel version
! of the three−dimensional fourth order Runge Kutta
! code used for solving the Spinning Disk Flame Sheet
! Problem
!
! Date : April 2005
!=== 10

!
USE vkvar
USE vk in
USE gen grid
USE der ord 4
USE grid map
USE func def
USE vk cf
USE vkpar

! 20

!
IMPLICIT NONE

!
INTEGER :: var,nn,npts,k,j,i
REAL*8 :: tt1, tt2, mod1,tout,time1,time2,total time

!
! Initiate MPI
!=============
!

call MPI INIT(ierr) 30

call MPI COMM RANK(MPI COMM WORLD, id, ierr)
call MPI COMM SIZE(MPI COMM WORLD, nprocs, ierr)
CALL MPI BARRIER(MPI COMM WORLD,ierr)

!
!
! Read Inputs
!============
!

CALL input
CALL grid assign 40

CALL MPI BARRIER(MPI COMM WORLD,ierr)
!
! Allocate arrays, set up grid and initial conditions and
! communicate with adjacent processors
!=======================================
!

CALL allocate
CALL grid
if (irestart==0) CALL initial conditions(nvar)
if (irestart==1.or.irestart==2) CALL restart 50

if (irestart==3) CALL initial colsys
!

CALL MPI BARRIER(MPI COMM WORLD,ierr)
CALL vk buffer comm(1,fsize)
CALL init runge

106

CALL MPI BARRIER(MPI COMM WORLD,ierr)
!

if (id==0) then
print 1, ’D=’,Damk, ’Le_F=’, Le1, ’Pr=’, Pr,’Pe=’,Pe

end if 60

1 format(a6,f24.4,a6,f4.2,a6,f4.2,a6,f4.2)
! If there is a stretch map the derivaties
!===========================
!

CALL der map
!
! Print pertinent parameters to screen
!===========================
!

70

!
! Integrate until tstop is reached
!===========================
!

if (irestart==0) then
if (id==0) open(UNIT=222,file=’vkout.dat’,status=’replace’)
t = 0.0

end if
!

if (irestart==3) then 80

if (id==0) open(UNIT=222,file=’vkout.dat’,status=’replace’)
t = 0.0

end if
!

if (irestart==1) then
if (id==0) open(UNIT=222,file=’vkout.dat’,status=’old’,position=’append’)
t = tlast

end if
!

if (irestart==2) then 90

if (id==0) open(UNIT=222,file=’vkout.dat’,status=’replace’)
t = 0.0

end if
!

time1 = MPI WTIME()
DO nn=1,n tstep

!
tout = t + dt

CALL rk54(t,tout)
CALL MPI BARRIER(MPI COMM WORLD,ierr) 100

!
if (mod(nn,err out freq)==0) CALL track error(t)
if (nn==51000.and.pert.ne.0.0) CALL perturb
if (mod(nn,cont out freq)==0.and.nn.ne.n tstep) then

CALL vk communication(1,fsize)
CALL output(t,nn)

end if
!

107

END DO
! 110

time2 = MPI WTIME()
nn = nn−1
CALL vk communication(1,fsize)
CALL output(t,nn)

!
CLOSE(222)

!
!
! Gather the temperature and species values from all the processors
! and write them to the output file 120

!===
!

if (id ==0) print *, ’Wrote output’
!

total time = time2−time1
!

if (id == 0) print 22, ’Time taken: ’, total time
!
22 format(2x,a12,1f36.20)
! 130

print *, id, ’RUN COMPLETED’
!
! Deallocate all arrays and call for a stop
!============================
!

deallocate(f,ferr,cc,cc1,Q1,fprime,VEL)
!

call MPI FINALIZE(ierror)
!

STOP 140

!
END PROGRAM vk

Global Variables

MODULE vkvar
IMPLICIT NONE

!
SAVE

!
INCLUDE "mpif.h"

!
INTEGER, PARAMETER :: nx1max=100
INTEGER, PARAMETER :: nx2max=100
INTEGER, PARAMETER :: nx3max=100 10

INTEGER, PARAMETER :: nmax=nx1max
INTEGER, PARAMETER :: neqmax=6
INTEGER :: n tstep, nvar, n1, n2, n3,irestart,twrite
REAL*8 :: t,tlast,pert,wnum,RHO, CP, U, V, W, LAMBDA, Q, OMEGA, STRETCH1, STRETCH2, STRETCH3
REAL*8 :: T0, TINF,tprev,H0,b0
REAL*8 :: dx1,dx2,dx3,rmt,rm,kny

108

REAL*8, DIMENSION(:), TARGET, ALLOCATABLE :: ibnd,jbnd,kbnd
INTEGER :: iord,err out freq,cont out freq
INTEGER :: neqn,nx1,nx2,nx3
REAL*8 :: x1min,x2min,x3min,x1max,x2max,x3max,dt,dt1 20

REAL*8 :: tend,cfl,tmax
REAL*8 :: dx1min,dx2min,dx3min,x1lrxn,x2lrxn,x3lrxn,x1knx1,x2knx2
REAL*8, DIMENSION(:), TARGET, ALLOCATABLE :: ack,bck,cck
INTEGER :: ikutta,nstage,ikk,n2x,noutput2,noutput1,grd1,grd2,grd3
REAL*8, DIMENSION(:), POINTER :: wf
REAL*8, DIMENSION(:,:,:,:,:), TARGET, ALLOCATABLE :: cc1
REAL*8, DIMENSION(:,:,:,:,:), TARGET, ALLOCATABLE :: cc
REAL*8, DIMENSION(:,:,:,:), TARGET, ALLOCATABLE :: rkj
REAL*8, DIMENSION(:,:,:,:), TARGET, ALLOCATABLE :: fprime
REAL*8, DIMENSION(:,:,:,:), TARGET, ALLOCATABLE:: dfdx1,dfdx2,dfdx3 30

REAL*8, DIMENSION(:,:,:,:), TARGET, ALLOCATABLE :: df2dx1,df2dx2,df2dx3
REAL*8, DIMENSION(:,:,:,:), TARGET, ALLOCATABLE :: df2dx1dx2,df2dx1dx3,df2dx2dx3
REAL*8, DIMENSION(:), POINTER :: b,d,rl,u1,a
REAL*8 :: alp1st,a1st,b1st,alp2st,a2st,b2st

!
REAL*8, DIMENSION(:,:,:), TARGET, ALLOCATABLE :: Q1
REAL*8, DIMENSION(:,:,:), TARGET, ALLOCATABLE :: Q2
REAL*8, DIMENSION(:,:,:,:), TARGET, ALLOCATABLE :: f
REAL*8, DIMENSION(:,:,:,:), TARGET, ALLOCATABLE :: ferr
REAL*8, DIMENSION(:,:,:,:), TARGET, ALLOCATABLE :: fx1 40

REAL*8, DIMENSION(:,:,:,:), TARGET, ALLOCATABLE :: ffx1
REAL*8, DIMENSION(:,:,:,:), TARGET, ALLOCATABLE :: fx2
REAL*8, DIMENSION(:,:,:,:), TARGET, ALLOCATABLE :: ffx2
REAL*8, DIMENSION(:,:,:,:), TARGET, ALLOCATABLE :: fx3
REAL*8, DIMENSION(:,:,:,:), TARGET, ALLOCATABLE :: ffx3
REAL*8, DIMENSION(:), TARGET, ALLOCATABLE :: x1
REAL*8, DIMENSION(:), TARGET, ALLOCATABLE :: x2
REAL*8, DIMENSION(:), TARGET, ALLOCATABLE :: x3
REAL*8, DIMENSION(:), TARGET, ALLOCATABLE :: xx1
REAL*8, DIMENSION(:), TARGET, ALLOCATABLE :: xx2 50

REAL*8, DIMENSION(:), TARGET, ALLOCATABLE :: xx3
REAL*8, DIMENSION(:), TARGET, ALLOCATABLE :: dxidx
REAL*8, DIMENSION(:), TARGET, ALLOCATABLE :: dxi2dx2
REAL*8, dimension(:,:,:,:,:), target, allocatable :: f prime
REAL*8, dimension(:,:,:,:,:), target, allocatable :: f prime periodic
REAL*8, dimension(:,:,:,:,:), target, allocatable :: f pprime per
REAL*8, dimension(:,:,:,:), target, allocatable :: f periodic
REAL*8, dimension(:,:,:,:,:), target, allocatable :: f pprime
REAL*8, dimension(:,:,:,:,:,:), target, allocatable :: f cpprime
REAL*8, dimension(:,:), target, allocatable :: VEL 60

INTEGER :: fsize
REAL*8 :: Pr, Damk, beta, eq1, eps, Le1, Le2, alpha1, alpha2, bcval, Pe
REAL*8 :: tstar, zstar

!
! MPI related variables

INTEGER :: nprocs, id, cart comm, ierr,ierror, ghostlayer, mpilayer
INTEGER :: x1size, x2size, x3size, totsize, velsize
INTEGER :: sbx1 size,sbx2 size,sbx3 size
INTEGER, dimension(:), TARGET, ALLOCATABLE :: allsize, disp, allrange

109

INTEGER, dimension(2) :: loci, locj, lock 70

INTEGER, dimension(3) :: comm, rid, rsize, coords, free, dims,periodic
INTEGER, dimension(6) :: idnbr
INTEGER :: err chk
INTEGER, dimension(3,2) :: dom bound,sndim
REAL*8,dimension(3) :: sndx
REAL*8, dimension(:,:,:,:), target, allocatable :: out f
REAL*8, dimension(:), target, allocatable :: out x1
REAL*8, dimension(:), target, allocatable :: out x2
REAL*8, dimension(:), target, allocatable :: out x3
REAL*8, dimension(:), target, allocatable :: myres 80

REAL*8, dimension(:), target, allocatable :: allres
REAL*8, dimension(:), target, allocatable :: send buffx1 r
REAL*8, dimension(:), target, allocatable :: send buffx1 l
REAL*8, dimension(:), target, allocatable :: send buffx2 r
REAL*8, dimension(:), target, allocatable :: send buffx2 l
REAL*8, dimension(:), target, allocatable :: send buffx3 r
REAL*8, dimension(:), target, allocatable :: send buffx3 l
REAL*8, dimension(:), target, allocatable :: recv buffx1 l
REAL*8, dimension(:), target, allocatable :: recv buffx1 r
REAL*8, dimension(:), target, allocatable :: recv buffx2 l 90

REAL*8, dimension(:), target, allocatable :: recv buffx2 r
REAL*8, dimension(:), target, allocatable :: recv buffx3 l
REAL*8, dimension(:), target, allocatable :: recv buffx3 r

!
END MODULE vkvar

IO and Perturbations

MODULE vk in
!

CONTAINS
SUBROUTINE input

!
! This SUBROUTINE reads input parameters from file vk.dat
!==
!
! 10

USE vkvar
!

IMPLICIT NONE
!

INTEGER :: d1
REAL*8 :: dummy

!
open(Unit=14,file="vkcf.dat")

!
read(14,’(a40)’) 20

read(14,*) nvar,n tstep,dt
read(14,’(a40)’)
read(14,*) ikutta,iord
read(14,’(a40)’)

110

read(14,*) H0,b0, eq1
read(14,’(a40)’)
read(14,*) x1min,x2min,x3min
read(14,’(a10)’)
read(14,*) x1max,x2max,x3max
read(14,’(a40)’) 30

read(14,*) nx1,nx2,nx3
read(14,’(a60)’)
read(14,*) STRETCH1, STRETCH2, STRETCH3
read(14,’(a60)’)
read(14,*) Pr, Le1, Le2, Damk, alpha1, alpha2, beta, eps, bcval
read(14,’(a60)’)
read(14,*) T0, TINF
read(14,’(a80)’)
read(14,*) irestart, pert, wnum, err out freq, cont out freq
read(14,’(a80)’) 40

read(14,*) grd1,grd2,grd3
read(14,’(a80)’)
read(14,*) tstar, zstar
close(14)

!
! Check for input errors
!==================
!

err chk = 0
if (nx1.le.4.or.nx2.`e.4.or.nx3.`e.4) err chk = 1 50

if (n tstep.le.0) err chk = 2
if (ikutta.le.0) err chk = 3
if (Pr.lt.0.or.Le1.`t.0.or.Le2.`t.0.or.Damk.`t.0) err chk = 4
if (alpha1.lt.0.or.a`pha2.`t.0.or.eps.`t.0.or.bcva`.`t.0) err chk = 4
if (irestart.lt.0.or.irestart.gt.3) err chk = 5

!
CALL ERROR

!
! Run vkcolsys in order to calculate the flowfield
! The velocities are stored in ’vel.dat’ 60

!=================================
!

if (id ==0) call vkcolsys(nx3,STRETCH3,x3min,x3max,H0,b0)
CALL MPI BARRIER(MPI COMM WORLD,ierr)

!
open(Unit=15,file="vel.dat")

!
!
! Correct some variables
!=========================== 70

!
fsize = nvar+3

!
END SUBROUTINE input

!
!===
!===

111

!
Subroutine restart

! 80

USE vkvar
!

IMPLICIT NONE
!

INTEGER :: i,j,k,proc
INTEGER,dimension(2) :: indi,indj,indk
REAL*8, dimension(:,:,:,:),allocatable :: fres

!
allocate(fres(3,0:sndim(3,1)−1,0:sndim(2,1)−1,0:sndim(1,1)−1))
do i = 1,2 90

indi(i) = loci(i)−dom bound(1,i)
indj(i) = locj(i)−dom bound(2,i)
indk(i) = lock(i)−dom bound(3,i)

end do
!
! if (id==0) then

open(UNIT=301,file=’res.dmp’,status=’old’)
do k = 0,sndim(3,1)−1

do j = 0,sndim(2,1)−1
do i = 0,sndim(1,1)−1 100

!
read(301,*) fres(1,k,j,i), fres(2,k,j,i), fres(3,k,j,i)

!
end do

end do
end do
read(301,*) tlast
close(301)

! end if
call MPI BARRIER(MPI COMM WORLD,ierr) 110

!
do k = indk(1),indk(2)

do j = indj(1),indj(2)
do i = indi(1),indi(2)

f(1,k,j,i) = fres(1,k,j,i)
f(2,k,j,i) = fres(2,k,j,i)
f(3,k,j,i) = fres(3,k,j,i)
ferr(1,k,j,i) = f(1,k,j,i)

end do
end do 120

end do
!

deallocate(fres)
!

end Subroutine restart
!
!===

!===
! 130

112

Subroutine allocate
!

USE vkvar
!

IMPLICIT NONE
!

INTEGER :: k
REAL*8 :: aplace holder

!
ALLOCATE(f(1:fsize,lock(1):lock(2),locj(1):locj(2),loci(1):loci(2))) 140

ALLOCATE(ferr(1:1,lock(1):lock(2),locj(1):locj(2),loci(1):loci(2)))
ALLOCATE(fprime(1:fsize,lock(1):lock(2),locj(1):locj(2),loci(1):loci(2)))
ALLOCATE(rkj(1:nvar,lock(1):lock(2),locj(1):locj(2),loci(1):loci(2)))
ALLOCATE(cc(1:2*nvar,1:3,lock(1):lock(2),locj(1):locj(2),loci(1):loci(2)))
ALLOCATE(cc1(1:2,1:3,lock(1):lock(2),locj(1):locj(2),loci(1):loci(2)))
ALLOCATE(Q1(lock(1):lock(2),locj(1):locj(2),loci(1):loci(2)))

!
! Obtain velocity information

!================================
! 150

allocate(VEL(1:3,0:nx3−1))
ALLOCATE(x3(0:nx3−1))

!
do k = 0,nx3−1

!
read(15,*) x3(k),&

&VEL(3,k),VEL(1,k),VEL(2,k)
!
!

end do 160

close(15)
!
! Assign value to Peclet Number
!=========================

Pe = VEL(3,0)*Pr
!

End Subroutine allocate
!
!==
!== 170

!
Subroutine output(tt,step)

!
USE vkvar

!
IMPLICIT NONE

!
INTEGER, target :: i,j,k
INTEGER :: ind,proc,iout,tinteger
INTEGER, pointer :: ii,jj,kk 180

INTEGER, dimension(2) :: indi,indj,indk
INTEGER, INTENT(IN) :: step
REAL*8, INTENT(IN) :: tt

113

character*20 :: oname,iname
!

ind = 1
if (id == 0) then

oname = ’vkout_cont’
iout = 122
write(iname,23)trim(oname),tt/100 190

print *, iname
23 format(a,f6.4,’.dat’)
!

open(UNIT=100,file=trim(iname),status=’replace’)
!

do i = 0,nx1−1
do j = 0,nx2−1

do k = 0,nx3−1
!

if (sndim(1,2) == 1) ii => i 200

if (sndim(2,2) == 1) jj => i
if (sndim(3,2) == 1) kk => i
if (sndim(1,2) == 2) ii => j
if (sndim(2,2) == 2) jj => j
if (sndim(3,2) == 2) kk => j
if (sndim(1,2) == 3) ii => k
if (sndim(2,2) == 3) jj => k
if (sndim(3,2) == 3) kk => k

!
write(100,200) out f(nvar+1,kk,jj,ii) ,out f(nvar+2,kk,jj,ii), out f(nvar+3,kk,jj,ii) ,& 210

& out f(1,kk,jj,ii), out f(2,kk,jj,ii), out f(3,kk,jj,ii)
!

ind = ind+1
!

end do
end do

end do
!

close(100)
end if 220

!
!

if (id==0) then
if (mod(step,50000)==0.or.step==n tstep) then

oname = ’res’
write(iname,24)trim(oname),tt/100
print *, iname

24 format(a,f6.4,’.dmp’)
open(UNIT=101,file=trim(iname),status=’replace’)
open(UNIT=102,file=’res.dmp’,status=’replace’) 230

!
do k = 0,sndim(3,1)−1

do j = 0,sndim(2,1)−1
do i = 0,sndim(1,1)−1

!
write(101,201) out f(1,k,j,i), out f(2,k,j,i), out f(3,k,j,i)

114

write(102,201) out f(1,k,j,i), out f(2,k,j,i), out f(3,k,j,i)
!

end do
end do 240

end do
write(101,*) t
write(102,*) t
close(101)
close(102)

end if
end if
deallocate(out f)

!
call MPI BARRIER(MPI COMM WORLD,ierr) 250

!
200 format(2x,3f10.6,3f12.8)
201 format(2x,3f22.18)
!

End Subroutine output
!
!==
!==
!

Subroutine track error(curr time) 260

!
USE vkvar

!
IMPLICIT NONE

!
INTEGER :: i,j,k
INTEGER,dimension(nvar) :: indz
REAL*8, INTENT(IN) :: curr time
REAL*8,dimension(2) :: max temp,max temp all,mtempavg,mtempavg all
REAL*8 :: err,err all,qmax,qmaxall,fmax,fmaxall 270

REAL*8,dimension(nprocs) :: maxtemp zval, mtempvalall, mtempavg zval, mtempavgvalall
INTEGER ::mind,mind2
REAL*8, dimension(:,:,:), allocatable :: favg

!
max temp(1) = 0.0d0
maxtemp zval = 0.0d0
mtempavg(1) = 0.0d0
mtempavg zval = 0.0d0
qmax = 0.d0
fmax = 0.d0 280

err = 0.0d0
do i = 1,nvar

indz(i) = 0
if (sndim(i,2)−3==0) indz(i) = 1

end do
!

allocate(favg(lock(1):lock(2),locj(1):locj(2),loci(1):loci(2)))
!

DO k=lock(1)−dom bound(3,1)+1,lock(2)−dom bound(3,2)

115

DO j = locj(1)−dom bound(2,1)+1,locj(2)−dom bound(2,2) 290

DO i = loci(1)−dom bound(1,1)+1,loci(2)−dom bound(1,2)
!

favg(k,j,i) = (f(1,k,j,i)+f(1,k−1,j,i)+f(1,k,j−1,i)+f(1,k,j,i−1)&
&+f(1,k−1,j−1,i)+f(1,k−1,j,i−1)+f(1,k,j−1,i−1)+f(1,k−1,j−1,i−1))/dfloat(8)

!
end DO

end DO
end DO

!
DO k=lock(1)−dom bound(3,1),lock(2)−dom bound(3,2) 300

DO j = locj(1)−dom bound(2,1),locj(2)−dom bound(2,2)
DO i = loci(1)−dom bound(1,1),loci(2)−dom bound(1,2)

!
err = err+sqrt(((f(1,k,j,i) − ferr(1,k,j,i))**2))/TINF
if (f(1,k,j,i).gt.max temp(1)) then

max temp(1) = f(1,k,j,i)
maxtemp zval = f(nvar+3,k,j,i)

end if
!

if (favg(k,j,i).gt.mtempavg(1)) then 310

mtempavg(1) = favg(k,j,i)
mtempavg zval = (f(nvar+3,k,j,i)+&

&f(nvar+3,k−indz(3),j−indz(2),i−indz(1)))/dfloat(2)
end if

!
if (Q1(k,j,i).gt.qmax) qmax=Q1(k,j,i)
if (f(2,k,j,i).gt.fmax) fmax=f(2,k,j,i)
ferr(1,k,j,i) = f(1,k,j,i)

!
END DO 320

END DO
END DO
mtempavg(2) = id
max temp(2) = id

!
CALL MPI REDUCE(err,err all,1,MPI DOUBLE PRECISION,&

&MPI SUM,0,MPI COMM WORLD,ierr)
CALL MPI REDUCE(max temp,max temp all,1,MPI 2DOUBLE PRECISION,&

&MPI MAXLOC,0,MPI COMM WORLD,ierr)
CALL MPI REDUCE(mtempavg,mtempavg all,1,MPI 2DOUBLE PRECISION,& 330

&MPI MAXLOC,0,MPI COMM WORLD,ierr)
CALL MPI REDUCE(qmax,qmaxall,1,MPI DOUBLE PRECISION,&

&MPI MAX,0,MPI COMM WORLD,ierr)
CALL MPI REDUCE(fmax,fmaxall,1,MPI DOUBLE PRECISION,&

&MPI MAX,0,MPI COMM WORLD,ierr)
!

CALL MPI GATHER(maxtemp zval,1,MPI DOUBLE PRECISION,&
&mtempvalall,1,MPI DOUBLE PRECISION,0,MPI COMM WORLD,ierr)

!
CALL MPI GATHER(mtempavg zval,1,MPI DOUBLE PRECISION,& 340

&mtempavgvalall,1,MPI DOUBLE PRECISION,0,MPI COMM WORLD,ierr)
!

116

err all = err all/(nx1*nx2*nx3*1.d0)
if (id==0) then

mind = max temp all(2)+1
mind2 = mtempavg all(2)+1
print 111, curr time,err all,max temp all(1),mtempvalall(mind),&

&mtempavg all(1),mtempavgvalall(mind2),qmaxall
write(222,111) curr time,err all,max temp all(1),mtempvalall(mind)&

&,mtempavg all(1),mtempavgvalall(mind2) 350

end if
!
111 format(1x,1f10.5,2f10.6,1f6.3,1f10.6,1f6.3,2f10.6)
!

End Subroutine track error
!
!===
!===
!
! 360

Subroutine ERROR
!

USE vkvar
!

IMPLICIT NONE
!

INTEGER :: stat
!

if (err chk == 1) print *, ’Number of grid pts in all directions must be >= 5’
if (err chk == 2) print *, ’Number of time steps cannot be < 0’ 370

if (err chk == 3) print *, ’ikutta is < 1’
if (err chk == 4) print *, ’All parameter values (Pr, Le. . . .) must be > 0’
if (err chk == 5) print *, ’Irestart must be 0 or 1’
if (err chk == 6) print *, ’Proc allocation error, pls check if nprocs > npts’

!
if (err chk > 0) CALL MPI ABORT(MPI COMM WORLD,stat,ierr)

!
End Subroutine ERROR

!===
!=== 380

!
END MODULE vk in

Grid Generation

MODULE gen grid
contains

SUBROUTINE grid
!

USE vkvar
!

IMPLICIT NONE
!

INTEGER, target :: i,j,k
INTEGER, pointer :: ii,jj,kk 10

117

INTEGER, dimension(2) :: indi,indj,indk
REAL*8 :: s1, s2, s3
REAL*8, dimension(3) :: dom,dx
REAL*8, pointer, dimension(:) :: v1,v2,v3

!
ALLOCATE(x1(0:nx1−1),xx1(0:nx1−1))
ALLOCATE(x2(0:nx2−1),xx2(0:nx2−1))

!
! SUBROUTINE sets up the grid for the 3D problem
!=== 20

!
! Caculate the min grid spacing for X1, X2 and X3
!===
!
! If dimension is periodic set value of boundary
!===
!

if (x1max==0.)x1max = 2.*acos(−1.)
if (x2max==0.)x2max = 2.*acos(−1.)
if (x3max==0.)x3max = 2.*acos(−1.) 30

!
!
111 format(2x,3f6.3)
!

dom(1) = (x1max−x1min)
dom(2) = (x2max−x2min)
dom(3) = (x3max−x3min)

!
s1 = 1.
s2 = 1. 40

!
do j=1,nx1−2

s1 = s1+STRETCH1**(j)
end do

!
do k=1,nx2−2

s2 = s2+STRETCH2**(k)
end do

!
s1 = dom(1)/s1 50

s2 = dom(2)/s2
!

if (nx1.gt.0) then
dx1 = dom(1)/((nx1−1.d0)*1.d0)

else
dx1 = 1.d0

end if
!

if (nx2.gt.0) then
dx2 = dom(2)/((nx2−1.d0)*1.d0) 60

else
dx2 = 1.d0

end if

118

!
if (nx3.gt.0) then

dx3 = dom(3)/((nx3−1.d0)*1.d0)
else

dx3 = 1.d0
end if

! 70

! print *, ’dx’, dx1,dx2,dx3
! print *, nx1,nx2,nx3
! if (id ==0) print *, ’dx3=’, dx3
!

DO i=0,nx1−1
x1(i) = i*dx1*1.d0

END DO
!

DO j=0,nx2−1
x2(j) = j*dx2*1.d0 80

END DO
!

xx1(0) = x1min
do i = 1,nx1−1

xx1(i) = xx1(i−1)+s1*STRETCH1**(i−1)
end do

!
xx2(0) = x2min
do i = 1,nx2−1

xx2(i) = xx2(i−1)+s2*STRETCH2**(i−1) 90

end do
!

dx(1) = dx1
dx(2) = dx2
dx(3) = dx3

!
do i = 1,3

sndx(i) = dx(sndim(i,2))
end do

100

! DO k =0,nx3−1
! x3(k) = k*dx3
! END DO

do i = 1,2
indi(i) = loci(i)−dom bound(1,i)
indj(i) = locj(i)−dom bound(2,i)
indk(i) = lock(i)−dom bound(3,i)

end do
!
! 110

do k = lock(1)−dom bound(3,1),lock(2)−dom bound(3,2)
do j = locj(1)−dom bound(2,1),locj(2)−dom bound(2,2)

do i = loci(1)−dom bound(1,1),loci(2)−dom bound(1,2)
!

if (sndim(1,2) == 1) ii => i
if (sndim(2,2) == 1) ii => j

119

if (sndim(3,2) == 1) ii => k
if (sndim(1,2) == 2) jj => i
if (sndim(2,2) == 2) jj => j
if (sndim(3,2) == 2) jj => k 120

if (sndim(1,2) == 3) kk => i
if (sndim(2,2) == 3) kk => j
if (sndim(3,2) == 3) kk => k

!
f(nvar+1,k,j,i) = xx1(ii)
f(nvar+2,k,j,i) = xx2(jj)
f(nvar+3,k,j,i) = x3(kk)

!
! if (id==0) print 100, kk,jj,ii,f(nvar+1,k,j,i),f(nvar+2,k,j,i),f(nvar+3,k,j,i) 130

end do
end do

end do
!

100 format(2x,3i5,6f10.5)
DEALLOCATE(x1,x2,x3)

!
CONTAINS

!
! Functions 140

!============
!

FUNCTION BLOCK LOW(proc id,num proc,num elem)
INTEGER :: BLOCK LOW
INTEGER, INTENT(IN) :: proc id, num proc
REAL, INTENT(IN) :: num elem
BLOCK LOW = proc id*num elem/num proc

END FUNCTION BLOCK LOW
!

FUNCTION BLOCK HIGH(proc id,num proc,num elem) 150

INTEGER :: BLOCK HIGH
INTEGER, INTENT(IN) :: proc id, num proc, num elem
BLOCK HIGH = (proc id+1)*num elem/num proc−1

END FUNCTION BLOCK HIGH
!

FUNCTION BLOCK SIZE(proc id,num proc,num elem)
INTEGER :: BLOCK SIZE
INTEGER, INTENT(IN) :: proc id, num proc
REAL, INTENT(IN) :: num elem
BLOCK SIZE = (proc id+1)*num elem/num proc & 160

&−proc id*num elem/num proc
END FUNCTION BLOCK SIZE

!
END SUBROUTINE grid

!
!
!**
!
!

120

END MODULE gen grid 170

! NONUNIFORM GRID
! X1
!
! xx1(0) = x1min
! do i=1,nx1
! xx1(i) = xx1(i−1)+s1*STRETCH1**(i−1)
! end do
!
! 180

! X2
!
!
! xx2(0) = x2min
! do i=1,nx2
! xx2(i) = xx2(i−1)+s2*STRETCH2**(i−1)
! end do
!
!
! X3 190

!
! xx3(0) = x3min
! do i=1,nx3
! xx3(i) = xx3(i−1)+s3*STRETCH3**(i−1)
! end do
!
! end if

200

MODULE grid map
!

contains
!

SUBROUTINE der map
!

USE vkvar
USE der ord 4

!
IMPLICIT NONE 10

!
INTEGER :: i, j, k, l, ind
INTEGER, dimension(3) :: indi, indj, indk
REAL*8 :: a1, a2

!
do i = 1,2

indi(i) = loci(i) − dom bound(1,i)
indj(i) = locj(i) − dom bound(2,i)
indk(i) = lock(i) − dom bound(3,i)

121

end do 20

!
do l = 1,nvar

!
CALL prime(l,nvar+sndim(l,2))
CALL pprime(l,nvar+sndim(l,2))

!
do k = indk(1),indk(2)

do j = indj(1), indj(2)
do i = indi(1),indi(2)

! 30

cc1(1,l,k,j,i) = 1.d0/(f prime(l,nvar+sndim(l,2),k,j,i))
cc1(2,l,k,j,i) = −f pprime(l,nvar+sndim(l,2),k,j,i)/&

&((f prime(l,nvar+sndim(l,2),k,j,i))**3)
!

a1 = abs(1.0d0 − cc1(1,l,k,j,i))
a2 = abs(0.0d0 − cc1(2,l,k,j,i))

!
if (a1.lt.1.0d−3) cc1(1,l,k,j,i) = 1.0d0
if (a2.lt.1.0d−3) cc1(2,l,k,j,i) = 0.0d0

! 40

end do
end do

end do
!

deallocate(f prime,f pprime)
!

end do
!

CALL MPI BARRIER(MPI COMM WORLD,ierr)
! 50

12 format(a10,4f12.8)
!
END SUBROUTINE der map

!
!==
!==
!

END MODULE grid map

MPI Assignments and Domain Decomposition

MODULE vkpar
!
CONTAINS
!
SUBROUTINE grid assign
!
! This subroutine initiates and completes all necessary allocations and
! functions needed for the parallel routine
!==
! 10

USE vkvar

122

USE vk in
!

IMPLICIT NONE
!

INTEGER :: i,end index,plc hld,mid
INTEGER, dimension(3) :: max pts,min pts
INTEGER, dimension(3,3) :: ndim
INTEGER, dimension(6) :: nrange

! 20

! In this subroutine, the procs are allocated such that the direction with the
! highest number of grid points is always assigned to the index i and the direction
! with the lowest number of grid points is assigned to the index k
! This was done to make the code perform faster, expecially in terms of do loops
!
! The array sndim is crucial in identifying the direction each index corresponds to
! The sndim(*,1) correspond the indices: 1=i, 2=j, 3=k
! The sndim(*,2) elements store the value of the directions: 1=r, 2=theta, 3=z
!==
! 30

ndim(1,1) = nx1 ! ndim stores the no. of grid pts and the periodicity info
ndim(2,1) = nx2
ndim(3,1) = nx3

!
ndim(1,3) = grd1
ndim(2,3) = grd2
ndim(3,3) = grd3
do i=1,3

ndim(i,2) = 0
end do 40

!
if (x1max==0.) ndim(1,2) = 1
if (x2max==0.) ndim(2,2) = 1
if (x3max==0.) ndim(3,2) = 1

!
if (nx1.ne.nx2.or.nx1.ne.nx3.or.nx2.ne.nx3) then

max pts = maxloc(ndim,1) ! identify the directions which have max and min grid pts
min pts = minloc(ndim,1)

else
max pts(1) = 3 50

min pts(1) = 1
end if

!
mid = 0

!
do i = 1,3

if (i.ne.min pts(1).and.i.ne.max pts(1)) mid = i
periodic(i) = 0

end do
! 60

!
sndim(1,1) = ndim(max pts(1),1) ! sndim(1) = i, sndim(2) = j, sndim(3) = k
sndim(1,2) = max pts(1) ! sndim(2) stores the corresponding directions
periodic(1) = ndim(max pts(1),2) ! (r,theta,z) that above indices point to

123

sndim(2,1) = ndim(mid,1)
sndim(2,2) = mid
periodic(2) = ndim(mid,2)
sndim(3,1) = ndim(min pts(1),1)
sndim(3,2) = min pts(1)
periodic(3) = ndim(min pts(1),2) 70

!
if (grd1.eq.0.and.grd2.eq.0.and.grd3.eq.0) then

if (mod(nprocs,8).eq.0) then
dims(1) = 0
dims(2) = 0
dims(3) = 0

else
if (mod(nprocs,4).eq.0) then

dims(2) = 0
dims(3) = 1 80

else
dims(2) = 1
dims(3) = 1

end if
end if

!
else

dims(1) = ndim(max pts(1),3)
dims(2) = ndim(mid,3)
dims(3) = ndim(min pts(1),3) 90

end if
!

ghostlayer = 2
mpilayer = 1

!
call MPI DIMS CREATE(nprocs,3,dims,ierr)
call MPI CART CREATE(MPI COMM WORLD,3,dims,periodic,1,cart comm,ierr)
call MPI COMM RANK(cart comm,id,ierr)
call MPI CART SHIFT(cart comm,0,1,idnbr(1),idnbr(2),ierr)
call MPI CART SHIFT(cart comm,1,1,idnbr(3),idnbr(4),ierr) 100

call MPI CART SHIFT(cart comm,2,1,idnbr(5),idnbr(6),ierr)
call MPI CART COORDS(cart comm,id,3,coords,ierr)

!
do i = 1,3

if (sndim(i,1).le.dims(i)) then
err chk = 6
CALL ERROR

end if
end do

! 110

! Assign vectors for identifying boundary processors
!===
!

do i = 1,3
dom bound(i,1) = −ghostlayer
dom bound(i,2) = ghostlayer

end do

124

!
if (coords(1) == 0 .and. periodic(1) == 0) dom bound(1,1) = 0
if (coords(1) == dims(1)−1 .and. periodic(1) == 0) dom bound(1,2) = 0 120

if (coords(2) == 0 .and. periodic(2) == 0) dom bound(2,1) = 0
if (coords(2) == dims(2)−1 .and. periodic(2) == 0) dom bound(2,2) = 0
if (coords(3) == 0 .and. periodic(3) == 0) dom bound(3,1) = 0
if (coords(3) == dims(3)−1 .and. periodic(3) == 0) dom bound(3,2) = 0

!
! Set up sub communicators for each dimension
!===
!

free(1) = 1
free(2) = 0 130

free(3) = 0
!

call MPI CART SUB(cart comm,free,comm(1),ierr)
call MPI COMM RANK(comm(1),rid(1),ierr)
call MPI COMM SIZE(comm(1),rsize(1),ierr)

!
free(1) = 0
free(2) = 1
free(3) = 0

! 140

call MPI CART SUB(cart comm,free,comm(2),ierr)
call MPI COMM RANK(comm(2),rid(2),ierr)
call MPI COMM SIZE(comm(2),rsize(2),ierr)

!
free(1) = 0
free(2) = 0
free(3) = 1

!
call MPI CART SUB(cart comm,free,comm(3),ierr)
call MPI COMM RANK(comm(3),rid(3),ierr) 150

call MPI COMM SIZE(comm(3),rsize(3),ierr)
!
! Determine the start and end index for each processor in each dim
!===
!

loci(1) = BLOCK LOW(rid(1),rsize(1),sndim(1,1))
loci(2) = BLOCK HIGH(rid(1),rsize(1),sndim(1,1))
locj(1) = BLOCK LOW(rid(2),rsize(2),sndim(2,1))
locj(2) = BLOCK HIGH(rid(2),rsize(2),sndim(2,1))
lock(1) = BLOCK LOW(rid(3),rsize(3),sndim(3,1)) 160

lock(2) = BLOCK HIGH(rid(3),rsize(3),sndim(3,1))
!
!

x1size = BLOCK SIZE(rid(1),rsize(1),sndim(1,1))
x2size = BLOCK SIZE(rid(2),rsize(2),sndim(2,1))
x3size = BLOCK SIZE(rid(3),rsize(3),sndim(3,1))

!
!

totsize = x1size*x2size*x3size
! 170

125

! Buffers for Gathering
!======================
!

allocate(allsize(nprocs))
allocate(disp(nprocs))
allocate(allrange(6*nprocs))

!
nrange(1) = lock(1)
nrange(2) = lock(2)
nrange(3) = locj(1) 180

nrange(4) = locj(2)
nrange(5) = loci(1)
nrange(6) = loci(2)

!
CALL MPI ALLGATHER(totsize,1,MPI INTEGER,allsize,1,&

&MPI INTEGER,cart comm,ierr)
CALL MPI ALLGATHER(nrange,6,MPI INTEGER,allrange,6,&

&MPI INTEGER,cart comm,ierr)
!

disp(1) = 0 190

do i = 2,nprocs
disp(i) = allsize(i−1) + disp(i−1)

end do
!
! Account for the ghost layers in the Boundary Processors
!==
!

if (dom bound(1,1).ne.0) then
loci(1) = loci(1) − ghostlayer

end if 200

!
if (dom bound(1,2).ne.0) then

loci(2) = loci(2) + ghostlayer
end if

!
if (dom bound(2,1).ne.0) then

locj(1) = locj(1) − ghostlayer
end if

!
if (dom bound(2,2).ne.0) then 210

locj(2) = locj(2) + ghostlayer
end if

!
if (dom bound(3,1).ne.0) then

lock(1) = lock(1) − ghostlayer
end if

!
if (dom bound(3,2).ne.0) then

lock(2) = lock(2) + ghostlayer
end if 220

!
! Allocate buffers for final communications
!==

126

!
end index = allsize(nprocs) + disp(nprocs)
ALLOCATE(myres(totsize))
ALLOCATE(allres(end index))

! ALLOCATE(out f(1:fsize,0:x3size*rsize(3)−1,0:x2size*rsize(2)−1,0:x1size*rsize(1)−1))
!
! Print Decomposition information: 230

!=========================
!

if (id == 0) then
print *, ’dim’,sndim(1,2),’:’,dims(1),’ dim’,sndim(2,2),’:’, dims(2),&

&’ dim’,sndim(3,2),’:’,dims(3)
print *, ’Grid points / proc- nx1:’, x1size,’ nx2:’,x2size,’ nx3:’,x3size
print *, ’Total no of grid points :’, nx1,’X’,nx2,’X’,nx3

end if
!

CONTAINS 240

FUNCTION BLOCK LOW(proc id,num proc,num elem)
INTEGER :: BLOCK LOW
INTEGER, INTENT(IN) :: proc id, num proc, num elem
BLOCK LOW = proc id*num elem/num proc

END FUNCTION BLOCK LOW
!

FUNCTION BLOCK HIGH(proc id,num proc,num elem)
INTEGER :: BLOCK HIGH
INTEGER, INTENT(IN) :: proc id, num proc, num elem
BLOCK HIGH = (proc id+1)*num elem/num proc−1 250

END FUNCTION BLOCK HIGH
!

FUNCTION BLOCK SIZE(proc id,num proc,num elem)
INTEGER :: BLOCK SIZE
INTEGER, INTENT(IN) :: proc id, num proc, num elem
BLOCK SIZE = (proc id+1)*num elem/num proc &

&−proc id*num elem/num proc
END FUNCTION BLOCK SIZE

!
! 260

END SUBROUTINE grid assign
!===
!===
!
!
SUBROUTINE vk communication(ind1,ind2)

!
USE vkvar

!
IMPLICIT NONE 270

!
INTEGER :: i,j,k,index,procs,el,n
INTEGER, INTENT(IN) :: ind1,ind2

!
ALLOCATE(out f(ind1:ind2,0:sndim(3,1)−1,0:sndim(2,1)−1,0:sndim(1,1)−1))
do n = ind1,ind2

127

!
index = 1

!
do k = lock(1)−dom bound(3,1),lock(2)−dom bound(3,2) 280

do j = locj(1)−dom bound(2,1),locj(2)−dom bound(2,2)
do i = loci(1)−dom bound(1,1),loci(2)−dom bound(1,2)

!
myres(index) = f(n,k,j,i)
index = index+1

!
end do

end do
end do

! 290

CALL MPI ALLGATHERV(myres,totsize,MPI REAL8,&
&allres,allsize,disp,MPI REAL8,&
&MPI COMM WORLD,ierr)

!
index = 1

!
do procs = 0,nprocs−1

el = 1 + procs*6
do k = allrange(el),allrange(el+1)

do j = allrange(el+2),allrange(el+3) 300

do i = allrange(el+4),allrange(el+5)
out f(n,k,j,i) = allres(index)
index = index+1

end do
end do

end do
end do

!
end do

! 310

END SUBROUTINE vk communication
!
!===================================
!===================================
!
!

SUBROUTINE vk buffer comm(ind1,ind2)
!
! This subroutince facilitates the communication
! between adjacent processors 320

!==
!
!

USE vkvar
!

IMPLICIT NONE
!

INTEGER :: ind,n,k,j,i,ii,jj,kk,arg1,arg2,p,tag1,tag2,dummy1, dummy2,stat
real*8 :: test1, test2

128

INTEGER, INTENT(IN) :: ind1,ind2 330

!
! Allocate the send and receive buffers
!==
!

sbx1 size = (ind2−ind1+1)*(lock(2)−lock(1)+1+dom bound(3,1)−dom bound(3,2))&
&*(locj(2)−locj(1)+1+dom bound(2,1)−dom bound(2,2))*ghostlayer

sbx2 size = (ind2−ind1+1)*(lock(2)−lock(1)+1+dom bound(3,1)−dom bound(3,2))&
&*(loci(2)−loci(1)+1+dom bound(1,1)−dom bound(1,2))*ghostlayer

sbx3 size = (ind2−ind1+1)*(locj(2)−locj(1)+1+dom bound(2,1)−dom bound(2,2))&
&*(loci(2)−loci(1)+1+dom bound(1,1)−dom bound(1,2))*ghostlayer 340

!
!

ALLOCATE(send buffx1 l(sbx1 size),recv buffx1 r(sbx1 size))
ALLOCATE(send buffx1 r(sbx1 size),recv buffx1 l(sbx1 size))
ALLOCATE(send buffx2 l(sbx2 size),recv buffx2 r(sbx2 size))
ALLOCATE(send buffx2 r(sbx2 size),recv buffx2 l(sbx2 size))
ALLOCATE(send buffx3 l(sbx3 size),recv buffx3 r(sbx3 size))
ALLOCATE(send buffx3 r(sbx3 size),recv buffx3 l(sbx3 size))

!
! 350

! Communication in the i direction
!=======================================
!
!

if (dims(1).gt.1.and.idnbr(2).gt.id.and.idnbr(2).gt.−1) then
i = 1

!
do ii = 2*ghostlayer−1,ghostlayer,−1

do n = ind1,ind2
do k = lock(1)−dom bound(3,1),lock(2)−dom bound(3,2) 360

do j = locj(1)−dom bound(2,1),locj(2)−dom bound(2,2)
!

send buffx1 r(i) = f(n,k,j,loci(2)−ii)
i = i+1

!
end do

end do
end do

end do
! 370

CALL MPI SENDRECV(send buffx1 r,sbx1 size,&
&MPI REAL8,idnbr(2),0,recv buffx1 r,sbx1 size,&
&MPI REAL8,idnbr(2),1,MPI COMM WORLD,stat,ierr)

!
i = 1

!
do ii = ghostlayer−1,0,−1

do n = ind1,ind2
do k = lock(1)−dom bound(3,1),lock(2)−dom bound(3,2)

do j = locj(1)−dom bound(2,1),locj(2)−dom bound(2,2) 380

f(n,k,j,loci(2)−ii) = recv buffx1 r(i)

129

i = i+1
!

end do
end do

end do
end do

!
end if 390

!
if (dims(1).gt.1.and.idnbr(1).lt.id.and.idnbr(1).gt.−1) then

!
i = 1

!
do ii = loci(1)+ghostlayer,loci(1)+2*ghostlayer−1

do n = ind1,ind2
do k = lock(1)−dom bound(3,1),lock(2)−dom bound(3,2)

do j = locj(1)−dom bound(2,1),locj(2)−dom bound(2,2)
! 400

send buffx1 l(i) = f(n,k,j,ii)
i = i+1

!
end do

end do
end do

end do
!

CALL MPI SENDRECV(send buffx1 l,sbx1 size,&
&MPI REAL8,idnbr(1),1,recv buffx1 l,sbx1 size,& 410

&MPI REAL8,idnbr(1),0,MPI COMM WORLD,stat,ierr)
!

i = 1
!

do ii = loci(1),loci(1)+1
do n = ind1,ind2

do k = lock(1)−dom bound(3,1),lock(2)−dom bound(3,2)
do j = locj(1)−dom bound(2,1),locj(2)−dom bound(2,2)

!
f(n,k,j,ii) = recv buffx1 l(i) 420

i = i+1
!
!

end do
end do

end do
end do

!
end if

! 430

!
call MPI BARRIER(MPI COMM WORLD,ierr)

!
if (dims(1).gt.1.and.periodic(1)==1.and.idnbr(2).lt.id) then

i = 1

130

!
do ii = 2*ghostlayer,ghostlayer+1,−1

do n = ind1,ind2
do k = lock(1)−dom bound(3,1),lock(2)−dom bound(3,2)

do j = locj(1)−dom bound(2,1),locj(2)−dom bound(2,2) 440

!
send buffx1 r(i) = f(n,k,j,loci(2)−ii)
i = i+1

!
end do

end do
end do

end do
!

CALL MPI SENDRECV(send buffx1 r,sbx1 size,& 450

&MPI REAL8,idnbr(2),4,recv buffx1 r,sbx1 size,&
&MPI REAL8,idnbr(2),5,MPI COMM WORLD,stat,ierr)

!
i = 1

!
do ii = ghostlayer−1,0,−1

do n = ind1,ind2
do k = lock(1)−dom bound(3,1),lock(2)−dom bound(3,2)

do j = locj(1)−dom bound(2,1),locj(2)−dom bound(2,2)
460

f(n,k,j,loci(2)−ii) = recv buffx1 r(i)
i = i+1

!
end do

end do
end do

end do
!

end if
! 470

if (dims(1).gt.1.and.periodic(1)==1.and.idnbr(1).gt.id) then
i = 1

!
do ii = loci(1)+ghostlayer+1,loci(1)+2*ghostlayer

do n = ind1,ind2
do k = lock(1)−dom bound(3,1),lock(2)−dom bound(3,2)

do j = locj(1)−dom bound(2,1),locj(2)−dom bound(2,2)
!

send buffx1 l(i) = f(n,k,j,ii)
i = i+1 480

!
end do

end do
end do

end do
!

CALL MPI SENDRECV(send buffx1 l,sbx1 size,&
&MPI REAL8,idnbr(1),5,recv buffx1 l,sbx1 size,&

131

&MPI REAL8,idnbr(1),4,MPI COMM WORLD,stat,ierr)
! 490

i = 1
!

do ii = loci(1),loci(1)+1
do n = ind1,ind2

do k = lock(1)−dom bound(3,1),lock(2)−dom bound(3,2)
do j = locj(1)−dom bound(2,1),locj(2)−dom bound(2,2)

!
f(n,k,j,ii) = recv buffx1 l(i)
i = i+1

! 500

end do
end do

end do
end do

end if
!

call MPI BARRIER(MPI COMM WORLD,ierr)
!
! Communication in the j direction
!=================================== 510

!
!

if (dims(2).gt.1.and.idnbr(4).gt.id.and.idnbr(4).gt.−1) then
!

j = 1
!

do ii = 2*ghostlayer−1,ghostlayer,−1
!

do n = ind1,ind2
do k = lock(1)−dom bound(3,1),lock(2)−dom bound(3,2) 520

do i = loci(1)−dom bound(1,1),loci(2)−dom bound(1,2)
!

send buffx2 r(j) = f(n,k,locj(2)−ii,i)
j = j+1

!
end do

end do
end do

end do
! 530

CALL MPI SENDRECV(send buffx2 r,sbx2 size,&
&MPI REAL8,idnbr(4),id,recv buffx2 r,sbx2 size,&
&MPI REAL8,idnbr(4),idnbr(4),MPI COMM WORLD,stat,ierr)

!
j = 1

!
do ii = ghostlayer−1,0,−1

do n = ind1,ind2
do k = lock(1)−dom bound(3,1),lock(2)−dom bound(3,2)

do i = loci(1)−dom bound(1,1),loci(2)−dom bound(1,2) 540

!

132

f(n,k,locj(2)−ii,i) = recv buffx2 r(j)
j = j+1

!
end do

end do
end do

end do
end if

! 550

if (dims(2).gt.1.and.idnbr(3).lt.id.and.idnbr(3).gt.−1) then
!

j = 1
!

do ii = locj(1)+ghostlayer,locj(1)+2*ghostlayer−1
do n = ind1,ind2

do k = lock(1)−dom bound(3,1),lock(2)−dom bound(3,2)
do i = loci(1)−dom bound(1,1),loci(2)−dom bound(1,2)

!
send buffx2 l(j) = f(n,k,ii,i) 560

j = j+1
!

end do
end do

end do
end do

!
CALL MPI SENDRECV(send buffx2 l,sbx2 size,&

&MPI REAL8,idnbr(3),id,recv buffx2 l,sbx2 size,&
&MPI REAL8,idnbr(3),idnbr(3),MPI COMM WORLD,stat,ierr) 570

!
j = 1

!
do ii = locj(1),locj(1)+1

do n = ind1,ind2
do k = lock(1)−dom bound(3,1),lock(2)−dom bound(3,2)

do i = loci(1)−dom bound(1,1),loci(2)−dom bound(1,2)

f(n,k,ii,i) = recv buffx2 l(j)
j = j+1 580

!
end do

end do
end do

!
end do

!
end if

!
CALL MPI BARRIER(MPI COMM WORLD,ierr) 590

!
if (dims(2).gt.1.and.periodic(2)==1.and.idnbr(4).lt.id) then

j = 1
!

133

do ii = 2*ghostlayer,ghostlayer+1,−1
do n = ind1,ind2

do k = lock(1)−dom bound(3,1),lock(2)−dom bound(3,2)
do i = loci(1)−dom bound(1,1),loci(2)−dom bound(1,2)

!
send buffx2 r(j) = f(n,k,locj(2)−ii,i) 600

j = j+1
!

end do
end do

end do
end do

!
CALL MPI SENDRECV(send buffx2 r,sbx2 size,&

&MPI REAL8,idnbr(4),4,recv buffx2 r,sbx2 size,&
&MPI REAL8,idnbr(4),5,MPI COMM WORLD,stat,ierr) 610

!
j = 1

!
do ii = ghostlayer−1,0,−1

do n = ind1,ind2
do k = lock(1)−dom bound(3,1),lock(2)−dom bound(3,2)

do i = loci(1)−dom bound(1,1),loci(2)−dom bound(1,2)

f(n,k,locj(2)−ii,i) = recv buffx2 r(j)
j = j+1 620

!
end do

end do
end do

end do
!

end if
!

if (dims(2).gt.1.and.periodic(2)==1.and.idnbr(3).gt.id) then
! 630

j = 1
!

do ii = locj(1)+ghostlayer+1,locj(1)+2*ghostlayer
do n = ind1,ind2

do k = lock(1)−dom bound(3,1),lock(2)−dom bound(3,2)
do i = loci(1)−dom bound(1,1),loci(2)−dom bound(1,2)

!
send buffx2 l(j) = f(n,k,ii,i)
j = j+1

! 640

end do
end do

end do
end do

!
CALL MPI SENDRECV(send buffx2 l,sbx2 size,&

&MPI REAL8,idnbr(3),5,recv buffx2 l,sbx2 size,&

134

&MPI REAL8,idnbr(3),4,MPI COMM WORLD,stat,ierr)
!

j = 1 650

!
do ii = locj(1),locj(1)+1

do n = ind1,ind2
do k = lock(1)−dom bound(3,1),lock(2)−dom bound(3,2)

do i = loci(1)−dom bound(1,1),loci(2)−dom bound(1,2)
!

f(n,k,ii,i) = recv buffx2 l(j)
j = j+1

!
end do 660

end do
end do

end do
end if

!
call MPI BARRIER(MPI COMM WORLD,ierr)

!
!

! Communication in the k direction
!== 670

!
if (dims(3).gt.1.and.idnbr(6).gt.id.and.idnbr(6).gt.−1) then

k = 1
!

do ii = 2*ghostlayer−1,ghostlayer,−1
do n = ind1,ind2

do j = locj(1)−dom bound(2,1),locj(2)−dom bound(2,2)
do i = loci(1)−dom bound(1,1),loci(2)−dom bound(1,2)

!
send buffx3 r(k) = f(n,lock(2)−ii,j,i) 680

k = k+1
!

end do
end do

end do
end do

!
CALL MPI SENDRECV(send buffx3 r,sbx3 size,&

&MPI REAL8,idnbr(6),4,recv buffx3 r,sbx3 size,&
&MPI REAL8,idnbr(6),5,MPI COMM WORLD,stat,ierr) 690

!
k = 1

!
do ii = ghostlayer−1,0,−1

do n = ind1,ind2
do j = locj(1)−dom bound(2,1),locj(2)−dom bound(2,2)

do i = loci(1)−dom bound(1,1),loci(2)−dom bound(1,2)

f(n,lock(2)−ii,j,i) = recv buffx3 r(k)
k = k+1 700

135

!
end do

end do
end do

end do
!

end if
!

if (dims(3).gt.1.and.idnbr(5).lt.id.and.idnbr(5).gt.−1) then
k = 1 710

!
do ii = lock(1)+ghostlayer,lock(1)+2*ghostlayer−1

do n = ind1,ind2
do j = locj(1)−dom bound(2,1),locj(2)−dom bound(2,2)

do i = loci(1)−dom bound(1,1),loci(2)−dom bound(1,2)
!

send buffx3 l(k) = f(n,ii,j,i)
k = k+1

!
end do 720

end do
end do

end do
!

CALL MPI SENDRECV(send buffx3 l,sbx3 size,&
&MPI REAL8,idnbr(5),5,recv buffx3 l,sbx3 size,&
&MPI REAL8,idnbr(5),4,MPI COMM WORLD,stat,ierr)

!
k = 1

! 730

do ii = lock(1),lock(1)+1
do n = ind1,ind2

do j = locj(1)−dom bound(2,1),locj(2)−dom bound(2,2)
do i = loci(1)−dom bound(1,1),loci(2)−dom bound(1,2)

!
f(n,ii,j,i) = recv buffx3 l(k)
k = k+1

!
end do

end do 740

end do
end do

!
end if

!
call MPI BARRIER(MPI COMM WORLD,ierr)

!
if (dims(3).gt.1.and.periodic(3)==1.and.idnbr(6).lt.id) then

k = 1
! 750

do ii = 2*ghostlayer,ghostlayer+1,−1
do n = ind1,ind2

do j = locj(1)−dom bound(2,1),locj(2)−dom bound(2,2)

136

do i = loci(1)−dom bound(1,1),loci(2)−dom bound(1,2)
!

send buffx3 r(k) = f(n,lock(2)−ii,j,i)
k = k+1

!
end do

end do 760

end do
end do

!
CALL MPI SENDRECV(send buffx3 r,sbx3 size,&

&MPI REAL8,idnbr(6),4,recv buffx3 r,sbx3 size,&
&MPI REAL8,idnbr(6),5,MPI COMM WORLD,stat,ierr)

!
k = 1

!
do ii = ghostlayer−1,0,−1 770

do n = ind1,ind2
do j = locj(1)−dom bound(2,1),locj(2)−dom bound(2,2)

do i = loci(1)−dom bound(1,1),loci(2)−dom bound(1,2)

f(n,lock(2)−ii,j,i) = recv buffx3 r(k)
k = k+1

!
end do

end do
end do 780

end do
!

end if
!

if (dims(3).gt.1.and.periodic(3)==1.and.idnbr(5).gt.id) then
k = 1

!
do ii = lock(1)+ghostlayer+1,lock(1)+2*ghostlayer

do n = ind1,ind2
do j = locj(1)−dom bound(2,1),locj(2)−dom bound(2,2) 790

do i = loci(1)−dom bound(1,1),loci(2)−dom bound(1,2)
!

send buffx3 l(k) = f(n,ii,j,i)
k = k+1

!
end do

end do
end do

end do
! 800

CALL MPI SENDRECV(send buffx3 l,sbx3 size,&
&MPI REAL8,idnbr(5),5,recv buffx3 l,sbx3 size,&
&MPI REAL8,idnbr(5),4,MPI COMM WORLD,stat,ierr)

!
k = 1

!

137

do ii = lock(1),lock(1)+1
do n = ind1,ind2

do j = locj(1)−dom bound(2,1),locj(2)−dom bound(2,2)
do i = loci(1)−dom bound(1,1),loci(2)−dom bound(1,2) 810

!
f(n,ii,j,i) = recv buffx3 l(k)
k = k+1

!
end do

end do
end do

end do
end if

! 820

call MPI BARRIER(MPI COMM WORLD,ierr)
!
! Dealocate all send and recv buffers
!=====================================
!

DEALLOCATE(send buffx1 l,recv buffx1 r)
DEALLOCATE(send buffx1 r,recv buffx1 l)
DEALLOCATE(send buffx2 l,recv buffx2 r)
DEALLOCATE(send buffx2 r,recv buffx2 l)
DEALLOCATE(send buffx3 l,recv buffx3 r) 830

DEALLOCATE(send buffx3 r,recv buffx3 l)
!
END SUBROUTINE vk buffer comm

!
!===
!===
!
END MODULE vkpar

Derivative Routines

!
! This package has the derivati‘ve routines and the
! Runge−Kutta routines for parallel implementation
!
!
!===
!===
!
MODULE der ord 4

contains 10

!
SUBROUTINE prime(ivar,nvec)

! This subroutine calculates first derivatives
! The following format should be used when calling this subroutine
! f prime(Independent variable,Dependent variable,x3loc,x2loc,x1loc)
! Independent variable: x1=1
! x2=2

138

! x3=3
! Dependent variable: The variable for which the derivative is being calculated (T,Yi,u,v,w.)
! x3loc: The x3 location 20

! x2loc: The x2 location
! x1loc: The x1 location
!

USE vkvar
!

IMPLICIT NONE
!

INTEGER :: a1,b1,c1, i, j, k,ii,jj,kk
INTEGER, DIMENSION(:) :: indi(2),indj(2),indk(2)
INTEGER, INTENT(IN) :: ivar, nvec 30

REAL*8 :: h, h1, gl
!

ALLOCATE(f prime(ivar:ivar,nvec:nvec,lock(1):lock(2),locj(1):locj(2),loci(1):loci(2)))
!
! Calculate dfdx1
!===============
!

if (ivar == 1) then
h = sndx(ivar)

! print *, ’h’, h,ivar,sndim(3,2),sndx(3) 40

h1 = 1.0/(12.0*h)
a1 = 1
b1 = 0
c1 = 0

!
do k = lock(1)−dom bound(3,1),lock(2)−dom bound(3,2)

do j = locj(1)−dom bound(2,1),locj(2)−dom bound(2,2)
!

kk = k − lock(1)
jj = j − locj(1) 50

indi(1) = loci(1)−dom bound(1,1) − loci(1)
indi(2) = loci(2)−dom bound(1,2) − loci(1)

!
if (dom bound(1,1) == 0) then

ii = 0;i = 0;
f prime(ivar,nvec,k,j,i) = bnd 0(f,nvec,ii,jj,kk,a1,b1,c1,h1)
ii = 1;i = 1;
f prime(ivar,nvec,k,j,i) = bnd 1(f,nvec,ii,jj,kk,a1,b1,c1,h1)
indi(1) = indi(1)+ghostlayer;

end if 60

!
if (dom bound(1,2) == 0) then

ii = loci(2)−loci(1)−1;i = loci(2)−1
f prime(ivar,nvec,k,j,i) = bnd n1(f,nvec,ii,jj,kk,a1,b1,c1,h1)
ii = loci(2)−loci(1);i = loci(2)
f prime(ivar,nvec,k,j,i) = bnd n(f,nvec,ii,jj,kk,a1,b1,c1,h1)
indi(2) = indi(2)−ghostlayer;

end if
!

do ii = indi(1),indi(2) 70

139

i = ii+loci(1)
f prime(ivar,nvec,k,j,i) = mid(f,nvec,ii,jj,kk,a1,b1,c1,h1)

end do
!

end do
end do

!
else

!
! Calculate dfdx2 80

!===============*
if (ivar==2) then

h = sndx(ivar)
h1 = 1.0/(12.0*h)
a1 = 0
b1 = 1
c1 = 0

!
do k = lock(1) − dom bound(3,1), lock(2) − dom bound(3,2)

do i = loci(1) − dom bound(1,1), loci(2) − dom bound(1,2) 90

!
kk = k − lock(1)
ii = i − loci(1)
indj(1) = locj(1)−dom bound(2,1) − locj(1)
indj(2) = locj(2)−dom bound(2,2) − locj(1)

!
if (dom bound(2,1) == 0) then

jj = 0;j = 0;
f prime(ivar,nvec,k,j,i) = bnd 0(f,nvec,ii,jj,kk,a1,b1,c1,h1)
jj = 1;j = 1; 100

f prime(ivar,nvec,k,j,i) = bnd 1(f,nvec,ii,jj,kk,a1,b1,c1,h1)
indj(1) = indj(1) + ghostlayer

end if
!

if (dom bound(2,2) == 0) then
jj = locj(2)−locj(1)−1;j = locj(2)−1;
f prime(ivar,nvec,k,j,i) = bnd n1(f,nvec,ii,jj,kk,a1,b1,c1,h1)
jj = locj(2)−locj(1);j = locj(2)
f prime(ivar,nvec,k,j,i) = bnd n(f,nvec,ii,jj,kk,a1,b1,c1,h1)
indj(2) = indj(2) − ghostlayer 110

end if
!

do jj = indj(1),indj(2)
j = jj+locj(1)
f prime(ivar,nvec,k,j,i) = mid(f,nvec,ii,jj,kk,a1,b1,c1,h1)

end do
!

end do
end do

else 120

!
! Calculate dfdx3
!===============*

140

if (ivar==3) then
h = sndx(ivar)
h1 = 1.0/(12.0*h)
a1 = 0
b1 = 0
c1 = 1
do j = locj(1) − dom bound(2,1), locj(2) − dom bound(2,2) 130

do i = loci(1) − dom bound(1,1), loci(2) − dom bound(1,2)
!

jj = j − locj(1)
ii = i − loci(1)
indk(1) = lock(1)−dom bound(3,1) − lock(1)
indk(2) = lock(2)−dom bound(3,2) − lock(1)

!
if (dom bound(3,1) == 0) then

kk = 0;k = 0;
f prime(ivar,nvec,k,j,i) = bnd 0(f,nvec,ii,jj,kk,a1,b1,c1,h1) 140

kk = 1;k = 1;
f prime(ivar,nvec,k,j,i) = bnd 1(f,nvec,ii,jj,kk,a1,b1,c1,h1)
indk(1) = indk(1) + ghostlayer

end if
!

if (dom bound(3,2) == 0) then
kk = lock(2)−lock(1)−1;k = lock(2)−1;
f prime(ivar,nvec,k,j,i) = bnd n1(f,nvec,ii,jj,kk,a1,b1,c1,h1)
kk = lock(2)−lock(1);k = lock(2);
f prime(ivar,nvec,k,j,i) = bnd n(f,nvec,ii,jj,kk,a1,b1,c1,h1) 150

indk(2) = indk(2) − ghostlayer
end if

!
do kk = indk(1),indk(2)

k = kk + lock(1)
f prime(ivar,nvec,k,j,i) = mid(f,nvec,ii,jj,kk,a1,b1,c1,h1)

end do
!

end do
end do 160

endif
end if

end if
CONTAINS

!==
! Functions for calculating the above derivatives

!==
!
! 0 th Boundary
! 170

function bnd 0(p,nv1,ll1,mm1,nn1,r,s,t,u)
REAL*8::bnd 0
INTEGER :: l1, m1,n1
REAL*8,intent(in),dimension(:,:,:,:) :: p
INTEGER, intent(in) :: nv1,ll1,mm1,nn1,r,s,t
real*8, intent(in) :: u

141

!
l1 = ll1+1;m1=mm1+1;n1=nn1+1

!
bnd 0=(−3.0*p(nv1,n1+4*t,m1+4*s,l1+4*r)& 180

&+16.0*p(nv1,n1+3*t,m1+3*s,l1+3*r)&
&−36.0*p(nv1,n1+2*t,m1+2*s,l1+2*r)&
&+48.0*p(nv1,n1+t,m1+s,l1+r)&
&−25.0*p(nv1,n1,m1,l1))*u

end function bnd 0
!
! 0−1 Boundary
!
function bnd 1(p,nv1,ll1,mm1,nn1,r,s,t,u)

! 190

! Declare variables
!
REAL*8 :: bnd 1
REAL*8,intent(in),dimension(:,:,:,:) :: p
INTEGER, intent(in) :: nv1,ll1,mm1,nn1,r,s,t
INTEGER :: l1, m1, n1
real*8, intent(in) :: u

!
l1 = ll1+1;m1=mm1+1;n1=nn1+1

! 200

bnd 1 = (−3.0*p(nv1,n1−t,m1−s,l1−r)&
&−10.0*p(nv1,n1,m1,l1)&
&+18.0*p(nv1,n1+t,m1+s,l1+r)&
&−6.0*p(nv1,n1+2*t,m1+2*s,l1+2*r)&
&+p(nv1,n1+3*t,m1+3*s,l1+3*r))*u

!
end function bnd 1
!
! Middle
! 210

function mid(p,nv1,ll1,mm1,nn1,r,s,t,u)
REAL*8 :: mid
REAL*8, intent(in), dimension(:,:,:,:) :: p
INTEGER, intent(in) :: nv1,ll1,mm1,nn1,r,s,t
INTEGER :: l1, m1, n1
real*8, intent(in) :: u

!
l1 = ll1+1;m1=mm1+1;n1=nn1+1

!
mid = (p(nv1,n1−2*t,m1−2*s,l1−2*r)& 220

&−8.0*p(nv1,n1−t,m1−s,l1−r)&
&+8.0*p(nv1,n1+t,m1+s,l1+r)&
&−p(nv1,n1+2*t,m1+2*s,l1+2*r))*u

!
end function mid
!
! N−1 boundary
!
function bnd n1(p,nv1,ll1,mm1,nn1,r,s,t,u)

142

REAL*8::bnd n1 230

REAL*8,intent(in),dimension(:,:,:,:) :: p
INTEGER, intent(in) :: nv1,ll1,mm1,nn1,r,s,t
INTEGER :: l1, m1, n1
real*8, intent(in) :: u

!
l1 = ll1+1;m1=mm1+1;n1=nn1+1

!
bnd n1=−(−3.0*p(nv1,n1+t,m1+s,l1+r)&

&−10.0*p(nv1,n1,m1,l1)&
&+18.0*p(nv1,n1−t,m1−s,l1−r)& 240

&−6.0*p(nv1,n1−2*t,m1−2*s,l1−2*r)&
&+p(nv1,n1−3*t,m1−3*s,l1−3*r))*u

!
end function bnd n1
!
! Nth Boundary
!
function bnd n(p,nv1,ll1,mm1,nn1,r,s,t,u)

REAL*8 :: bnd n
REAL*8,intent(in),dimension(:,:,:,:) :: p 250

INTEGER, intent(in) :: nv1,ll1,mm1,nn1,r,s,t
real*8, intent(in) :: u
INTEGER :: l1, m1, n1

!
l1 = ll1+1;m1=mm1+1;n1=nn1+1

!
bnd n = −(−3.0*p(nv1,n1−4*t,m1−4*s,l1−4*r)&

&+16.0*p(nv1,n1−3*t,m1−3*s,l1−3*r)&
&−36.0*p(nv1,n1−2*t,m1−2*s,l1−2*r)&
&+48.0*p(nv1,n1−t,m1−s,l1−r)& 260

&−25.0*p(nv1,n1,m1,l1))*u
!

end function bnd n
!

END SUBROUTINE prime
!
!===
!===

SUBROUTINE pprime(ivar,nvec)
! This subroutine calculates second derivatives 270

! The following format should be used when calling this subroutine
! dfdx(Independent variable,Dependent variable,x3loc,x2loc,x1loc)
! Independent variable: x1=1
! x2=2
! x3=3
! Dependent variable: The variable for which the derivative is being calculated (T,Yi,u,v,w.)
! x3loc: The x3 location
! x2loc: The x2 location
! x1loc: The x1 location
! 280

USE vkvar
!

143

IMPLICIT NONE
!

REAL*8 :: h, h1
INTEGER :: a1,b1,c1,i,j,k,ii,jj,kk
INTEGER, DIMENSION(:) :: gl(6),indi(2),indj(2),indk(2)
INTEGER, INTENT(IN) :: ivar,nvec

!
ALLOCATE(f pprime(ivar:ivar,nvec:nvec,lock(1):lock(2),locj(1):locj(2),loci(1):loci(2))) 290

! df2dx1dx1
if (ivar==1) then

h = sndx(ivar)
h1 = 1.0/(12.0*h*h)
a1 = 1
b1 = 0
c1 = 0

!
do k = lock(1) − dom bound(3,1), lock(2) − dom bound(3,2)

do j = locj(1) − dom bound(2,1), locj(2) − dom bound(2,2) 300

!
kk = k − lock(1)
jj = j − locj(1)
indi(1) = loci(1)−dom bound(1,1) − loci(1)
indi(2) = loci(2)−dom bound(1,2) − loci(1)

!
if (dom bound(1,1) == 0) then

ii = 0;i = 0;
f pprime(ivar,nvec,k,j,i) = bnd 0(f,nvec,ii,jj,kk,a1,b1,c1,h1)
ii = 1;i = 1; 310

f pprime(ivar,nvec,k,j,i) = bnd 1(f,nvec,ii,jj,kk,a1,b1,c1,h1)
indi(1) = indi(1) + ghostlayer

end if
!

if (dom bound(1,2) == 0) then
ii = loci(2)−loci(1)−1;i = loci(2)−1;
f pprime(ivar,nvec,k,j,i) = bnd n1(f,nvec,ii,jj,kk,a1,b1,c1,h1)
ii = loci(2)−loci(1);i = loci(2)
f pprime(ivar,nvec,k,j,i) = bnd n(f,nvec,ii,jj,kk,a1,b1,c1,h1)
indi(2) = indi(2) − ghostlayer 320

end if
!

do ii = indi(1),indi(2)
i = ii + loci(1)
f pprime(ivar,nvec,k,j,i) = mid(f,nvec,ii,jj,kk,a1,b1,c1,h1)

end do
!

end do
end do

330

else
if (ivar==2) then

! df2dx2dx2
h = sndx(ivar)
h1 = 1.0/(12.0*h*h)

144

a1 = 0
b1 = 1
c1 = 0

!
do k = lock(1) − dom bound(3,1), lock(2) − dom bound(3,2) 340

do i = loci(1) − dom bound(1,1), loci(2) − dom bound(1,2)
!

kk = k − lock(1)
ii = i − loci(1)
indj(1) = locj(1)−dom bound(2,1) − locj(1)
indj(2) = locj(2)−dom bound(2,2) − locj(1)

!
if (dom bound(2,1) == 0) then

jj = 0; j = 0;
f pprime(ivar,nvec,k,j,i) = bnd 0(f,nvec,ii,jj,kk,a1,b1,c1,h1) 350

jj = 1; j = 1;
f pprime(ivar,nvec,k,j,i) = bnd 1(f,nvec,ii,jj,kk,a1,b1,c1,h1)
indj(1) = indj(1) + ghostlayer

end if
!

if (dom bound(2,2) == 0) then
jj = locj(2)−locj(1)−1;j = locj(2) − 1
f pprime(ivar,nvec,k,j,i) = bnd n1(f,nvec,ii,jj,kk,a1,b1,c1,h1)
jj = locj(2)−locj(1); j = locj(2) 360

f pprime(ivar,nvec,k,j,i) = bnd n(f,nvec,ii,jj,kk,a1,b1,c1,h1)
indj(2) = indj(2) − ghostlayer

end if
!

do jj = indj(1),indj(2)
j = jj +locj(1)
f pprime(ivar,nvec,k,j,i) = mid(f,nvec,ii,jj,kk,a1,b1,c1,h1)

end do
!

end do 370

end do
!

else
!

if (ivar == 3) then
! df2dx3dx3

h = sndx(ivar)
h1 = 1.0/(12.0*h*h)
a1 = 0
b1 = 0 380

c1 = 1
!

do j = locj(1) − dom bound(2,1), locj(2) − dom bound(2,2)
do i = loci(1) − dom bound(1,1), loci(2) − dom bound(1,2)

!
jj = j − locj(1)
ii = i − loci(1)
indk(1) = lock(1)−dom bound(3,1) − lock(1)

145

indk(2) = lock(2)−dom bound(3,2) − lock(1)
! 390

if (dom bound(3,1) == 0) then
kk = 0; k = 0;
f pprime(ivar,nvec,k,j,i) = bnd 0(f,nvec,ii,jj,kk,a1,b1,c1,h1)
kk = 1; k = 1;
f pprime(ivar,nvec,k,j,i) = bnd 1(f,nvec,ii,jj,kk,a1,b1,c1,h1)
indk(1) = indk(1) + ghostlayer

end if
!

if (dom bound(3,2) == 0) then
kk = lock(2)−lock(1)−1; k = lock(2)−1 400

f pprime(ivar,nvec,k,j,i) = bnd n1(f,nvec,ii,jj,kk,a1,b1,c1,h1)
kk = lock(2)−lock(1); k = lock(2)
f pprime(ivar,nvec,k,j,i) = bnd n(f,nvec,ii,jj,kk,a1,b1,c1,h1)
indk(2) = indk(2) − ghostlayer

end if
!

do kk = indk(1),indk(2)
k = kk+lock(1)
f pprime(ivar,nvec,k,j,i) = mid(f,nvec,ii,jj,kk,a1,b1,c1,h1)

end do 410

!
end do

end do
!

end if
end if

end if
!

CONTAINS
!== 420

!
! 0th Boundary
!
function bnd 0(p,nv1,ll1,mm1,nn1,r,s,t,u)

REAL*8::bnd 0
REAL*8,intent(in),dimension(:,:,:,:) :: p
INTEGER, intent(in) :: nv1,ll1,mm1,nn1,r,s,t
real*8, intent(in) :: u
INTEGER :: l1, m1, n1

! 430

l1 = ll1+1;m1=mm1+1;n1=nn1+1
!

bnd 0=(11.0*p(nv1,n1+4*t,m1+4*s,l1+4*r)&
&−56.0*p(nv1,n1+3*t,m1+3*s,l1+3*r)&
&+114.0*p(nv1,n1+2*t,m1+2*s,l1+2*r)&
&−104.0*p(nv1,n1+t,m1+s,l1+r)&
&+35.0*p(nv1,n1,m1,l1))*u

!
end function bnd 0
! 440

! 0−1 Boundary

146

!
function bnd 1(p,nv1,ll1,mm1,nn1,r,s,t,u)

REAL*8 :: bnd 1
REAL*8,intent(in),dimension(:,:,:,:) :: p
INTEGER, intent(in) :: nv1,ll1,mm1,nn1,r,s,t
real*8, intent(in) :: u
INTEGER :: l1, m1, n1

!
l1 = ll1+1;m1=mm1+1;n1=nn1+1 450

!
bnd 1 = (11.0*p(nv1,n1−1*t,m1−1*s,l1−1*r)&

&−20.0*p(nv1,n1,m1,l1)&
&+6.0*p(nv1,n1+t,m1+s,l1+r)&
&+4.0*p(nv1,n1+2*t,m1+2*s,l1+2*r)&
&−p(nv1,n1+3*t,m1+3*s,l1+3*r))*u

!
end function bnd 1
!
! Middle 460

!
function mid(p,nv1,ll1,mm1,nn1,r,s,t,u)

REAL*8 :: mid
REAL*8, intent(in), dimension(:,:,:,:) :: p
INTEGER, intent(in) :: nv1,ll1,mm1,nn1,r,s,t
real*8, intent(in) :: u
INTEGER :: l1, m1, n1

!
l1 = ll1+1;m1=mm1+1;n1=nn1+1

! 470

mid = (−p(nv1,n1−2*t,m1−2*s,l1−2*r)&
&+16.0*p(nv1,n1−t,m1−s,l1−r)&
&−30.0*p(nv1,n1,m1,l1)&
&+16.0*p(nv1,n1+t,m1+s,l1+r)&
&−p(nv1,n1+2*t,m1+2*s,l1+2*r))*u

!
end function mid
!
! N−1 Boundary
! 480

function bnd n1(p,nv1,ll1,mm1,nn1,r,s,t,u)
REAL*8::bnd n1
REAL*8,intent(in),dimension(:,:,:,:) :: p
INTEGER, intent(in) :: nv1,ll1,mm1,nn1,r,s,t
real*8, intent(in) :: u
INTEGER :: l1, m1, n1

!
l1 = ll1+1;m1=mm1+1;n1=nn1+1

!
bnd n1=(11.0*p(nv1,n1+t,m1+s,l1+r)& 490

&−20.0*p(nv1,n1,m1,l1)&
&+6.0*p(nv1,n1−t,m1−s,l1−r)&
&+4.0*p(nv1,n1−2*t,m1−2*s,l1−2*r)&
&−p(nv1,n1−3*t,m1−3*s,l1−3*r))*u

147

!
end function bnd n1
!
! Nth Boundary
!
function bnd n(p,nv1,ll1,mm1,nn1,r,s,t,u) 500

REAL*8 :: bnd n
REAL*8,intent(in),dimension(:,:,:,:) :: p
INTEGER, intent(in) :: nv1,ll1,mm1,nn1,r,s,t
real*8, intent(in) :: u
INTEGER :: l1, m1, n1

!
l1 = ll1+1;m1=mm1+1;n1=nn1+1

!
bnd n = (11.0*p(nv1,n1−4*t,m1−4*s,l1−4*r)&

&+35.0*p(nv1,n1,m1,l1)& 510

&−104.0*p(nv1,n1−t,m1−s,l1−r)&
&+114.0*p(nv1,n1−2*t,m1−2*s,l1−2*r)&
&−56.0*p(nv1,n1−3*t,m1−3*s,l1−3*r))*u

!
end function bnd n
!

END SUBROUTINE pprime
!

!==
!== 520

SUBROUTINE f1f2prime(ivar1,ivar2,nvec)
! This subroutine calculates cross derivatives
! The following format should be used when calling this subroutine
! dfdx(Independent variable1,Independent variable2,Dependent variable,x3loc,x2loc,x1loc)
! Independent variable: x1=1
! x2=2
! x3=3
! Dependent variable: The variable for which the derivative is being calculated (T,Yi,u,v,w.)
! x3loc: The x3 location
! x2loc: The x2 location 530

! x1loc: The x1 location
!

USE vkvar
!

IMPLICIT NONE
!

INTEGER :: a1,b1,c1,var,i,j,k
INTEGER, DIMENSION(:) :: gl(6),indi(2),indj(2),indk(2)
INTEGER, INTENT(IN) :: ivar1,ivar2,nvec
REAL*8 :: h,h1 540

!
ALLOCATE(f cpprime(ivar1:ivar1,ivar2:ivar2,nvec:nvec,lock(1):lock(2),locj(1):locj(2),loci(1):loci(2)))
call prime(ivar1,nvec)
! df2dx1dx2
if (ivar1==1 .and. ivar2==2) then

h = sndx(ivar1)
h1 = 1.0/(12.0*h)

148

a1 = 0
b1 = 1
c1 = 0 550

do k = lock(1) − dom bound(3,1), lock(2) − dom bound(3,2)
do i = loci(1) − dom bound(1,1), loci(2) − dom bound(1,2)

!
if (dom bound(2,1) == 0) then

j = 0
f cpprime(ivar1,ivar2,nvec,k,j,i) = bnd 0(f prime,ivar1,nvec,i,j,k,a1,b1,c1,h1)
j = 1
f cpprime(ivar1,ivar2,nvec,k,j,i) = bnd 1(f prime,ivar1,nvec,i,j,k,a1,b1,c1,h1)

end if
! 560

do j = locj(1) − dom bound(2,1), locj(2) − dom bound(2,2)
f cpprime(ivar1,ivar2,nvec,k,j,i) = mid(f prime,ivar1,nvec,i,j,k,a1,b1,c1,h1)

end do
!

if (dom bound(2,2) == 0) then
j = locj(2)−1
f cpprime(ivar1,ivar2,nvec,k,j,i) = bnd n1(f prime,ivar1,nvec,i,j,k,a1,b1,c1,h1)
j = locj(2)
f cpprime(ivar1,ivar2,nvec,k,j,i) = bnd n(f prime,ivar1,nvec,i,j,k,a1,b1,c1,h1)

end if 570

!
end do

end do
deallocate(f prime)

end if
if (ivar2==3 .and. ivar1==1 .or. ivar1==2) then

!
var = 1
! df2dx1dx3
do k = lock(1) − dom bound(3,1), lock(2) − dom bound(3,2) 580

do j = locj(1) − dom bound(2,1), lock(2) − dom bound(2,2)
do i = loci(1) − dom bound(1,1), loci(2) − dom bound(1,2)
end do

end do
end do
h = sndx(ivar2)
h1 = 1.0/(12.0*h)
a1 = 0
b1 = 0
c1 = 1 590

do j = locj(1) − dom bound(2,1), lock(2) − dom bound(2,2)
do i = loci(1) − dom bound(1,1), loci(2) − dom bound(1,2)

!
if (dom bound(3,1) == 0) then

k = 0
f cpprime(ivar1,ivar2,nvec,k,j,i) = bnd 0(f prime,var,nvec,i,j,k,a1,b1,c1,h1)
k = 1
f cpprime(ivar1,ivar2,nvec,k,j,i) = bnd 1(f prime,var,nvec,i,j,k,a1,b1,c1,h1)

end if
! 600

149

do k = lock(1) − dom bound(3,1), lock(2) − dom bound(3,2)
f cpprime(ivar1,ivar2,nvec,k,j,i) = mid(f prime,var,nvec,i,j,k,a1,b1,c1,h1)

end do
!

if (dom bound(3,2) == 0) then
k = lock(2)−1
f cpprime(ivar1,ivar2,nvec,k,j,i) = bnd n1(f prime,var,nvec,i,j,k,a1,b1,c1,h1)
k = lock(2)
f cpprime(ivar1,ivar2,nvec,k,j,i) = bnd n(f prime,var,nvec,i,j,k,a1,b1,c1,h1)

end if 610

!
end do

end do
deallocate(f prime)

end if
CONTAINS

!==
!
! 0th Boundary
! 620

function bnd 0(p,q,nv1,ll1,mm1,nn1,r,s,t,u)
REAL*8::bnd 0
INTEGER :: l1, m1,n1
REAL*8,intent(in),dimension(:,:,:,:,:) :: p
INTEGER, intent(in) :: nv1,q,ll1,mm1,nn1,r,s,t
real*8, intent(in) :: u

!
l1 = ll1+1;m1=mm1+1;n1=nn1+1

!
bnd 0=(−3.0*p(q,nv1,n1+4*t,m1+4*s,l1+4*r)& 630

&+16.0*p(q,nv1,n1+3*t,m1+3*s,l1+3*r)&
&−36.0*p(q,nv1,n1+2*t,m1+2*s,l1+2*r)&
&+48.0*p(q,nv1,n1+t,m1+s,l1+r)&
&−25.0*p(q,nv1,n1,m1,l1))*u

!
end function bnd 0
!
! 0−1 Boundary
!
function bnd 1(p,q,nv1,ll1,mm1,nn1,r,s,t,u) 640

REAL*8 :: bnd 1
REAL*8,intent(in),dimension(:,:,:,:,:) :: p
INTEGER, intent(in) :: nv1,q,ll1,mm1,nn1,r,s,t
INTEGER :: l1, m1, n1
real*8, intent(in) :: u

!
l1 = ll1+1;m1=mm1+1;n1=nn1+1

!
bnd 1 = (−3.0*p(q,nv1,n1−t,m1−s,l1−r)&

&−10.0*p(q,nv1,n1,m1,l1)& 650

&+18.0*p(q,nv1,n1+t,m1+s,l1+r)&
&−6.0*p(q,nv1,n1+2*t,m1+2*s,l1+2*r)&
&+p(q,nv1,n1+3*t,m1+3*s,l1+3*r))*u

150

!
end function bnd 1
!
! Middle
!
function mid(p,q,nv1,ll1,mm1,nn1,r,s,t,u)

REAL*8 :: mid 660

REAL*8, intent(in), dimension(:,:,:,:,:) :: p
INTEGER, intent(in) :: nv1,q,ll1,mm1,nn1,r,s,t
INTEGER :: l1, m1, n1
real*8, intent(in) :: u

!
l1 = ll1+1;m1=mm1+1;n1=nn1+1

!
mid = (p(q,nv1,n1−2*t,m1−2*s,l1−2*r)&

&−8.0*p(q,nv1,n1−t,m1−s,l1−r)&
&+8.0*p(q,nv1,n1+t,m1+s,l1+r)& 670

&−p(q,nv1,n1+2*t,m1+2*s,l1+2*r))*u
!

end function mid
!
! N−1 Boundary
!
function bnd n1(p,q,nv1,ll1,mm1,nn1,r,s,t,u)

REAL*8::bnd n1
REAL*8,intent(in),dimension(:,:,:,:,:) :: p
INTEGER, intent(in) :: nv1,q,ll1,mm1,nn1,r,s,t 680

INTEGER :: l1, m1, n1
real*8, intent(in) :: u

!
l1 = ll1+1;m1=mm1+1;n1=nn1+1

!
bnd n1=−(−3.0*p(q,nv1,n1+t,m1+s,l1+r)&

&−10.0*p(q,nv1,n1,m1,l1)&
&+18.0*p(q,nv1,n1−t,m1−s,l1−r)&
&−6.0*p(q,nv1,n1−2*t,m1−2*s,l1−2*r)&
&+p(q,nv1,n1−3*t,m1−3*s,l1−3*r))*u 690

!
end function bnd n1
!
! Nth Boundary
!
function bnd n(p,q,nv1,ll1,mm1,nn1,r,s,t,u)

REAL*8 :: bnd n
REAL*8,intent(in),dimension(:,:,:,:,:) :: p
INTEGER, intent(in) :: nv1,q,ll1,mm1,nn1,r,s,t
INTEGER :: l1, m1, n1 700

real*8, intent(in) :: u
!

l1 = ll1+1;m1=mm1+1;n1=nn1+1
!

bnd n = −(−3.0*p(q,nv1,n1−4*t,m1−4*s,l1−4*r)&
&+16.0*p(q,nv1,n1−3*t,m1−3*s,l1−3*r)&

151

&−36.0*p(q,nv1,n1−2*t,m1−2*s,l1−2*r)&
&+48.0*p(q,nv1,n1−t,m1−s,l1−r)&
&−25.0*p(q,nv1,n1,m1,l1))*u

! 710

end function bnd n
!===
!

END SUBROUTINE f1f2prime
!
!===

SUBROUTINE prime periodic(ivar,nvec)
! This subroutine calculates first derivatives
! The following format should be used when calling this subroutine
! f prime(Independent variable,Dependent variable,x3loc,x2loc,x1loc) 720

! Independent variable: x1=1
! x2=2
! x3=3
! Dependent variable: The variable for which the derivative is being calculated (T,Yi,u,v,w.)
! x3loc: The x3 location
! x2loc: The x2 location
! x1loc: The x1 location
!

USE vkvar
! 730

IMPLICIT NONE
!

INTEGER :: a1,b1,c1,i,j,k,ii,jj,kk
INTEGER, DIMENSION(:) :: gl(6),indi(2),indj(2),indk(2)
INTEGER, INTENT(IN) :: ivar,nvec
REAL*8 :: h, h1, test1

!
ALLOCATE(f prime periodic(ivar:ivar,nvec:nvec,lock(1):lock(2),locj(1):locj(2),loci(1):loci(2)))

!
! Calculate dfdx 740

!===============
if (ivar==1) then

h = sndx(ivar)
h1 = 1.0/(12.0*h)
a1 = 1
b1 = 0
c1 = 0

!
do k = lock(1) − dom bound(3,1), lock(2) − dom bound(3,2)

do j = locj(1) − dom bound(2,1), locj(2) − dom bound(2,2) 750

do i = loci(1)−dom bound(1,1),loci(2)−dom bound(1,2)
!

kk = k − lock(1)
jj = j − locj(1)
ii = i − loci(1)

!
f prime periodic(ivar,nvec,k,j,i) = &

& bnd 0(f,nvec,ii,jj,kk,a1,b1,c1,h1,nx3,nx2,nx1)
!

152

end do 760

end do
end do

else
!
! Calculate dfdx2
!===============*

if (ivar==2) then
h = sndx(ivar)
h1 = 1.0/(12.0*h)
a1 = 0 770

b1 = 1
c1 = 0

!
do k = lock(1) − dom bound(3,1), lock(2) − dom bound(3,2)

do j = locj(1) − dom bound(2,1), locj(2) − dom bound(2,2)
do i = loci(1)−dom bound(1,1),loci(2)−dom bound(1,2)

!
kk = k − lock(1)
jj = j − locj(1)
ii = i − loci(1) 780

!
f prime periodic(ivar,nvec,k,j,i) = &

& bnd 0(f,nvec,ii,jj,kk,a1,b1,c1,h1,nx3,nx2,nx1)
!

end do
end do

end do
!

else
! 790

! Calculate dfdx3
!===============

if (ivar==3) then
h = sndx(ivar)
h1 = 1.0/(12.0*h)
a1 = 0
b1 = 0
c1 = 1

!
do k = lock(1) − dom bound(3,1), lock(2) − dom bound(3,2) 800

do j = locj(1) − dom bound(2,1), locj(2) − dom bound(2,2)
do i = loci(1)−dom bound(1,1),loci(2)−dom bound(1,2)

!
kk = k − lock(1)
jj = j − locj(1)
ii = i − loci(1)

!
f prime periodic(ivar,nvec,k,j,i) = &

& bnd 0(f,nvec,ii,jj,kk,a1,b1,c1,h1,nx3,nx2,nx1)
! 810

end do
end do

153

end do
!

end if
end if

end if

CONTAINS
!== 820

! Functions for calculating the above derivatives
!==

!
! 0 th Boundary
!

function bnd 0(p,nv1,ll1,mm1,nn1,r,s,t,u,nxx3,nxx2,nxx1)
REAL*8::bnd 0
INTEGER :: l1, m1,n1
REAL*8,intent(in),dimension(:,:,:,:) :: p
INTEGER, intent(in) :: nv1,ll1,mm1,nn1,r,s,t,nxx3,nxx2,nxx1 830

real*8, intent(in) :: u
!

l1 = ll1+1;m1=mm1+1;n1=nn1+1
!

bnd 0=(−p(nv1,n1+2*t,m1+2*s,l1+2*r)&
&+8.0*p(nv1,n1+t,m1+s,l1+r)&
&−8.0*p(nv1,n1−1*t,&
&m1−1*s,l1−1*r)&
&+p(nv1,n1−2*t,&
&m1−2*s,l1−2*r))*u 840

end function bnd 0
!

END SUBROUTINE prime periodic
!
!===*
!===*

SUBROUTINE pprime per(ivar,nvec)
! This subroutine calculates first derivatives
! The following format should be used when calling this subroutine
! f prime(Independent variable,Dependent variable,x3loc,x2loc,x1loc) 850

! Independent variable: x1=1
! x2=2
! x3=3
! Dependent variable: The variable for which the derivative is being calculated (T,Yi,u,v,w.)
! x3loc: The x3 location
! x2loc: The x2 location
! x1loc: The x1 location
!

USE vkvar
! 860

IMPLICIT NONE
!

INTEGER :: a1,b1,c1,i,j,k,ii,jj,kk
INTEGER, INTENT(IN) :: ivar,nvec
REAL*8 :: h, h1

154

INTEGER, DIMENSION(:) :: gl(6),indi(2),indj(2),indk(2)
!

ALLOCATE(f pprime per(ivar:ivar,nvec:nvec,lock(1):lock(2),locj(1):locj(2),loci(1):loci(2)))
!

! Calculate dfdx 870

!===============
if (ivar==1) then

h = sndx(ivar)
h1 = 1.0/(12.0*h*h)
a1 = 1
b1 = 0
c1 = 0

!
do k = lock(1) − dom bound(3,1), lock(2) − dom bound(3,2)

do j = locj(1) − dom bound(2,1), locj(2) − dom bound(2,2) 880

do i = loci(1) − dom bound(1,1), loci(2) − dom bound(1,2)
!

kk = k − lock(1)
jj = j − locj(1)
ii = i − loci(1)

!
f pprime per(ivar,nvec,k,j,i) = &

& bnd 0(f,nvec,ii,jj,kk,a1,b1,c1,h1,nx3,nx2,nx1)
end do

end do 890

end do
else

!
! Calculate dfdx2
!===============

if (ivar==2) then
h = sndx(ivar)
h1 = 1.0/(12.0*h*h)
a1 = 0
b1 = 1 900

c1 = 0
do k = lock(1) − dom bound(3,1), lock(2) − dom bound(3,2)

do j = locj(1) − dom bound(2,1), locj(2) − dom bound(2,2)
do i = loci(1) − dom bound(1,1), loci(2) − dom bound(1,2)

!
kk = k − lock(1)
jj = j − locj(1)
ii = i − loci(1)

!
f pprime per(ivar,nvec,k,j,i) = & 910

& bnd 0(f,nvec,ii,jj,kk,a1,b1,c1,h1,nx3,nx2,nx1)
end do

end do
end do

else
!
! Calculate dfdx3
!===============

155

if (ivar==3) then
h = sndx(ivar) 920

h1 = 1.0/(12.0*h*h)
a1 = 0
b1 = 0
c1 = 1
do k = lock(1) − dom bound(3,1), lock(2) − dom bound(3,2)

do j = locj(1) − dom bound(2,1), locj(2) − dom bound(2,2)
do i = loci(1) − dom bound(1,1), loci(2) − dom bound(1,2)

!
kk = k − lock(1)
jj = j − locj(1) 930

ii = i − loci(1)
!

f pprime per(ivar,nvec,k,j,i) = &
& bnd 0(f,nvec,ii,jj,kk,a1,b1,c1,h1,nx3,nx2,nx1)

end do
end do

end do
!

endif
end if 940

end if
!

CONTAINS
!==

! Functions for calculating the above derivatives
!==

!
! 0 th Boundary
!

function bnd 0(p,nv1,ll1,mm1,nn1,r,s,t,u,nxx3,nxx2,nxx1) 950

REAL*8::bnd 0
INTEGER :: l1, m1,n1
REAL*8,intent(in),dimension(:,:,:,:) :: p
INTEGER, intent(in) :: nv1,ll1,mm1,nn1,r,s,t,nxx3,nxx2,nxx1
real*8, intent(in) :: u

!
l1 = ll1+1;m1=mm1+1;n1=nn1+1

!
bnd 0=(−p(nv1,n1+2*t,m1+2*s,l1+2*r)&

&+16.0*p(nv1,n1+t,m1+s,l1+r)& 960

&−30.*p(nv1,n1,m1,l1)&
&+16.0*p(nv1,n1−t,m1−s,l1−r)&
&−p(nv1,n1−2*t,m1−2*s,l1−2*r))*u

end function bnd 0
!

END SUBROUTINE pprime per
!==*
!==*

SUBROUTINE init runge
! 970

USE vkvar

156

!
IMPLICIT NONE

!
allocate(ack(ikutta),bck(ikutta),cck(ikutta))

!
if (ikutta==1) then

!
! 1st order backward scheme
!======================= 980

!
nstage = 1

!
ack(1) = 0.0d0

!
bck(1) = 1.0d0

!
cck(1) = 1.0d0

!
end if 990

!
if (ikutta==3) then

!
! (3,3) scheme of Williamson
!========================
!

nstage = 3
!

ack(1) = 0.0d0
ack(2) = −5.0d0/9.0d0 1000

ack(3) = −153.0d0/128.0d0
!

bck(1) = 1.0d0/3.0d0
bck(2) = 15.0d0/16.0d0
bck(3) = 8.0d0/15.0d0

!
cck(1) = 0.0d0
cck(2) = 1.0d0/3.0d0
cck(3) = 3.0d0/4.0d0

! 1010

end if
!

if (ikutta==5) then
!
! (5,4) scheme of Carpenter
!========================
!

nstage = 5
!

ack(1) = 0.0d0 1020

ack(2) = −0.417890474500d0
ack(3) = −1.192151694643d0
ack(4) = −1.697784692471d0
ack(5) = −1.514183444257d0

157

!
bck(1) = 0.1496590219993d0
bck(2) = 0.3792103129999d0
bck(3) = 0.8229550293869d0
bck(4) = 0.6994504559488d0
bck(5) = 0.1530572479681d0 1030

!
cck(1) = 0.0d0
cck(2) = 0.1496590219993d0
cck(3) = 0.3704009573644d0
cck(4) = 0.6222557631345d0
cck(5) = 0.9582821306748d0

!
end if

!
END SUBROUTINE init runge 1040

!
!
!===
!===
!
END MODULE der ord 4

Integration

MODULE vk cf
CONTAINS

!
SUBROUTINE rk54(tin,tout)

!
USE vkvar
USE vkpar

!
IMPLICIT NONE

! 10

! Runge−Kutta
!

INTEGER :: i, j, k, n, ns
REAL*8, INTENT(IN) :: tin, tout
REAL*8 :: time n, h
INTEGER, dimension(2) :: indi,indj,indk

!
h = tout−tin

!
DO ns=1,ikutta 20

!
time n = tin + cck(ns)*h

!
CALL per corr
CALL vk buffer comm(1,nvar)
CALL rhs(time n)

!
DO n=1,nvar

158

DO k = lock(1)−dom bound(3,1),lock(2)−dom bound(3,2)
DO j = locj(1)−dom bound(2,1),locj(2)−dom bound(2,2) 30

DO i = loci(1)−dom bound(1,1),loci(2)−dom bound(1,2)
!

rkj(n,k,j,i) = ack(ns)*rkj(n,k,j,i) + h*fprime(n,k,j,i)
f(n,k,j,i) = f(n,k,j,i) + bck(ns)*rkj(n,k,j,i)

!
if (f(n,k,j,i).lt.1.d−20) f(n,k,j,i) = 1.d−20

!
END DO

END DO
END DO 40

END DO
!

CALL MPI BARRIER(MPI COMM WORLD,ierr)
!
!
! Set boundary conditions
!====================
!

CALL bc(n)
! 50

! Check if temperature or species values go below 0 or above 100
! and set the floor at 0.0 and the ceiling at 100.0
!===
!

END DO
!

CALL MPI BARRIER(MPI COMM WORLD,ierr)
!

t = tout
! 60

END SUBROUTINE rk54
!
!===
!===
!

SUBROUTINE rhs(time curr)
!

USE vkvar
USE der ord 4

! 70

IMPLICIT NONE
!

INTEGER :: i, j, k, l, n,zpos
INTEGER, dimension(2) :: indi,indj,indk
REAL*8, INTENT(IN) :: time curr

!
! Compute and assign respective derivative values
!===================================
!

indi(1) = loci(1) − dom bound(1,1) 80

indi(2) = loci(2) − dom bound(1,2)

159

indj(1) = locj(1) − dom bound(2,1)
indj(2) = locj(2) − dom bound(2,2)
indk(1) = lock(1) − dom bound(3,1)
indk(2) = lock(2) − dom bound(3,2)

!
DO n = 1,nvar

DO l = 1,3
IF (periodic(l)==0) then

! 90

CALL prime(l,n)
CALL pprime(l,n)

!
DO k = indk(1),indk(2)

DO j = indj(1),indj(2)
DO i = indi(1),indi(2)

!
cc(n,sndim(l,2),k,j,i) = &

&f pprime(l,n,k,j,i)*(cc1(1,l,k,j,i)**2)&
&+f prime(l,n,k,j,i)*cc1(2,l,k,j,i) 100

cc(n+nvar,sndim(l,2),k,j,i) = f prime(l,n,k,j,i)*cc1(1,l,k,j,i)
!

END DO
END DO

END DO
!

DEALLOCATE(f prime,f pprime)
!

else 110

!
call prime periodic(l,n)
call pprime per(l,n)

!
DO k = indk(1),indk(2)

DO j = indj(1),indj(2)
DO i = indi(1),indi(2)

!
cc(n,sndim(l,2),k,j,i) = f pprime per(l,n,k,j,i)
cc(n+nvar,sndim(l,2),k,j,i) = f prime periodic(l,n,k,j,i) 120

!
END DO

END DO
END DO

!
DEALLOCATE(f prime periodic,f pprime per)

!
END IF

END DO
END DO 130

!
! Set domain boundary limits for the r direction since the
! singularities arise at boundary pts
!===

160

!
!

if (sndim(1,2) == 1.and.dom bound(1,1) == 0) indi(1) = loci(1)+1
if (sndim(1,2) == 1.and.dom bound(1,2) == 0) indi(2) = loci(2)−1
if (sndim(2,2) == 1.and.dom bound(2,1) == 0) indj(1) = locj(1)+1
if (sndim(2,2) == 1.and.dom bound(2,2) == 0) indj(2) = locj(2)−1 140

if (sndim(3,2) == 1.and.dom bound(3,1) == 0) indk(1) = lock(1)+1
if (sndim(3,2) == 1.and.dom bound(3,2) == 0) indk(2) = lock(2)−1

!
! Compute the d/dt for all the variables
!=============================
!

DO k = indk(1),indk(2)
DO j = indj(1),indj(2)

DO i = indi(1),indi(2)
! 150

if (sndim(1,2) == 3) zpos = i
if (sndim(2,2) == 3) zpos = j
if (sndim(3,2) == 3) zpos = k

!
Q1(k,j,i) = Damk * (eps**3) / ((tstar*zstar)**2) &

&* f(2,k,j,i)*f(3,k,j,i) * &
&exp (eps*(dfloat(1)/tstar − 1.d0 / f(1,k,j,i)))

!
fprime(1,k,j,i) =(1.d0/Pr)*(cc(1,1,k,j,i)+&

&cc(1,2,k,j,i)/(f(nvar+1,k,j,i)**2)& 160

&+cc(1,3,k,j,i))+&
&(1.d0/(f(nvar+1,k,j,i)*Pr)−&
&f(nvar+1,k,j,i)*VEL(1,zpos))*cc(4,1,k,j,i)&
&−VEL(2,zpos)*cc(4,2,k,j,i)&
&−VEL(3,zpos)*cc(4,3,k,j,i)&
&+beta*Q1(k,j,i)

!
fprime(2,k,j,i) = (1.d0/Pr/Le1)*(cc(2,1,k,j,i)+&

&cc(2,2,k,j,i)/(f(nvar+1,k,j,i)**2)&
&+cc(2,3,k,j,i))+& 170

&(1.d0/(f(nvar+1,k,j,i)*Le1*Pr)−&
&f(nvar+1,k,j,i)*VEL(1,zpos))*cc(5,1,k,j,i)&
&−VEL(2,zpos)*cc(5,2,k,j,i)&
&−VEL(3,zpos)*cc(5,3,k,j,i)&
&−alpha1*Q1(k,j,i)

!
fprime(3,k,j,i) = (1.d0/Pr/Le2)*(cc(3,1,k,j,i)+&

&cc(3,2,k,j,i)/(f(nvar+1,k,j,i)**2)&
&+cc(3,3,k,j,i))+&
&(1.d0/(f(nvar+1,k,j,i)*Le2*Pr)−& 180

&f(nvar+1,k,j,i)*VEL(1,zpos))*cc(6,1,k,j,i)&
&−VEL(2,zpos)*cc(6,2,k,j,i)&
&−VEL(3,zpos)*cc(6,3,k,j,i)&
&−alpha2*Q1(k,j,i)

!
! print 11, fprime(1,k,j,i), fprime(2,k,j,i), fprime(3,k,j,i)
!

161

END DO
END DO

END DO 190

!
11 format(2x,3f12.8)
!

END SUBROUTINE rhs
!
!================================= ====================
!==
!

subroutine bc(invar)
! 200

USE vkvar
!

IMPLICIT NONE
!

INTEGER :: i,j,k,n,a1,b1,c1,tsize,stat,ii,zpos,ffsize,r
INTEGER, INTENT(IN) :: invar
INTEGER, dimension(2) :: indi, indj, indk
REAL*8,dimension(:),allocatable :: trans
REAL*8,dimension(:,:,:),allocatable :: ff
REAL*8 :: h1, h2,y0 210

!
! B.C at z = 0:
!================
!

indi(1) = loci(1) − dom bound(1,1)
indi(2) = loci(2) − dom bound(1,2)
indj(1) = locj(1) − dom bound(2,1)
indj(2) = locj(2) − dom bound(2,2)
indk(1) = lock(1) − dom bound(3,1)
indk(2) = lock(2) − dom bound(3,2) 220

!
a1 = 0; b1 = 0; c1 = 0;
if (sndim(1,2) == 3) a1 = 1
if (sndim(2,2) == 3) b1 = 1
if (sndim(3,2) == 3) c1 = 1
if (sndim(1,2) == 3) ii = 1
if (sndim(2,2) == 3) ii = 2
if (sndim(3,2) == 3) ii = 3

!
y0 = 0.22d0 230

!
h1 = 1.d0/(12.d0*dx3)&

&*cc1(1,ii,indk(1),indj(1),indi(1))
!

if (sndim(1,2) == 3.and.dom bound(1,1) == 0) then
!

DO k = lock(1)−dom bound(3,1),lock(2)−dom bound(3,2)
DO j = locj(1)−dom bound(2,1),locj(2)−dom bound(2,2)

!
f(1,k,j,loci(1)) = T0 240

162

f(2,k,j,loci(1)) = (h1*(−3.d0*f(2,k,j,loci(1)+4)+&
&16.d0*f(2,k,j,loci(1)+3)−36.d0*f(2,k,j,loci(1)+2)&
&+48.d0*f(2,k,j,loci(1)+1))+Le1*Pe)/(Le1*Pe+25.d0*h1)

!
f(3,k,j,loci(1)) = (h1*(−3.d0*f(3,k,j,loci(1)+4)+&

&16.d0*f(3,k,j,loci(1)+3)−36.d0*f(3,k,j,loci(1)+2)&
&+48.d0*f(3,k,j,loci(1)+1)))/(Le2*Pe+25.d0*h1)

!
END DO

END DO 250

END if
!

if (sndim(2,2) == 3.and.dom bound(2,1) == 0) then
!

DO k = indk(1),indk(2)
DO i = indi(1),indi(2)

!
f(1,k,locj(1),i) = T0
f(2,k,locj(1),i) = (h1*(−3.d0*f(2,k,locj(1)+4,i)+&

&16.d0*f(2,k,locj(1)+3,i)−36.d0*f(2,k,locj(1)+2,i)& 260

&+48.d0*f(2,k,locj(1)+1,i))+Le1*Pe)/(Le1*Pe+25.d0*h1)
!

f(3,k,locj(1),i) = (h1*(−3.d0*f(3,k,locj(1)+4,i)+&
&16.d0*f(3,k,locj(1)+3,i)−36.d0*f(3,k,locj(1)+2,i)&
&+48.d0*f(3,k,locj(1)+1,i)))/(Le2*Pe+25.d0*h1)

!
END DO

END DO
END if

! 270

if (sndim(3,2) == 3.and.dom bound(3,1) == 0) then
!

DO j = indj(1),indj(2)
DO i = indi(1),indi(2)

!
f(1,lock(1),j,i) = T0
f(2,lock(1),j,i) = (h1*(−3.d0*f(2,lock(1)+4,j,i)+&

&16.d0*f(2,lock(1)+3,j,i)−36.d0*f(2,lock(1)+2,j,i)&
&+48.d0*f(2,lock(1)+1,j,i))+Le1*Pe)/(Le1*Pe+25.d0*h1)

! 280

f(3,lock(1),j,i) = (h1*(−3.d0*f(3,lock(1)+4,j,i)+&
&16.d0*f(3,lock(1)+3,j,i)−36.d0*f(3,lock(1)+2,j,i)&
&+48.d0*f(3,lock(1)+1,j,i)))/(Le2*Pe+25.d0*h1)

!
END DO

END DO
END if

!
! B.C at z = zinf
!================== 290

!
if (sndim(1,2)==3.and.dom bound(1,2) == 0) then

!

163

DO k = lock(1)−dom bound(3,1),lock(2)−dom bound(3,2)
DO j = locj(1)−dom bound(2,1),locj(2)−dom bound(2,2)

!
! f(1,k,j,loci(2)) = f(1,k,j,loci(2)−1)
! f(2,k,j,loci(2)) = f(2,k,j,loci(2)−1)
! f(3,k,j,loci(2)) = f(3,k,j,loci(2)−1)

f(1,k,j,loci(2)) = TINF 300

f(2,k,j,loci(2)) = 0.0d0
f(3,k,j,loci(2)) = 1.0d0/eq1

!
END DO

END DO
END if

!
if (sndim(2,2)==3.and.dom bound(2,2) == 0) then

!
DO k = indk(1),indk(2) 310

DO i = indi(1),indi(2)
!
! f(1,k,locj(2),i) = f(1,k,locj(2)−1,i)
! f(2,k,locj(2),i) = f(2,k,locj(2)−1,i)
! f(3,k,locj(2),i) = f(3,k,locj(2)−1,i)

f(1,k,locj(2),i) = TINF
f(2,k,locj(2),i) = 0.0d0
f(3,k,locj(2),i) = 1.0d0/eq1

!
END DO 320

END DO
end if

!
if (sndim(3,2)==3.and.dom bound(3,2) == 0) then

!
DO j = indj(1),indj(2)

DO i = indi(1),indi(2)
!
! f(1,lock(2),j,i) = f(1,lock(2)−1,j,i)
! f(2,lock(2),j,i) = f(2,lock(2)−1,j,i) 330

! f(3,lock(2),j,i) = f(3,lock(2)−1,j,i)
f(1,lock(2),j,i) = TINF
f(2,lock(2),j,i) = 0.0d0
f(3,lock(2),j,i) = 1.0d0/eq1

!
END DO

END DO
end if

!
! B.C at r = 0 340

!==============
indi(1) = loci(1) − dom bound(1,1)
indi(2) = loci(2) − dom bound(1,2)
indj(1) = locj(1) − dom bound(2,1)
indj(2) = locj(2) − dom bound(2,2)
indk(1) = lock(1) − dom bound(3,1)

164

indk(2) = lock(2) − dom bound(3,2)
!

ffsize=0
if (sndim(1,2)==1.and.dom bound(1,1) == 0) then 350

!
allocate(ff(3,indk(1):indk(2),indj(1):indj(2)))
DO n = 1,nvar

DO k = indk(1),indk(2)
DO j = indj(1),indj(2)

ff(n,k,j)=0.d0
!

DO r = −2,2,1
if (sndim(2,2)==2) ff(n,k,j) = ff(n,k,j)+f(n,k,j+r,loci(1)+1)+f(n,k,j+r,loci(1))
if (sndim(3,2)==2) ff(n,k,j) = ff(n,k,j)+f(n,k+r,j,loci(1)+1)+f(n,k+r,j,loci(1)) 360

END DO
ff(n,k,j) = ff(n,k,j)/dfloat(10)
f(n,k,j,loci(1)) = ff(n,k,j)

!
END DO

END DO
END DO
deallocate(ff)

!
END if 370

!
if (sndim(2,2)==1.and.dom bound(2,1) == 0) then

!
allocate(ff(3,indk(1):indk(2),indi(1):indi(2)))

!
DO n = 1,nvar

DO k = indk(1),indk(2)
DO i = indi(1),indi(2)

ff(n,k,i)=0.d0
! 380

DO r = −2,2,1
if (sndim(1,2)==2) ff(n,k,i) = ff(n,k,i)+f(n,k,locj(1)+1,i+r)+f(n,k,locj(1),i+r)
if (sndim(3,2)==2) ff(n,k,i) = ff(n,k,i)+f(n,k+r,locj(1)+1,i)+f(n,k+r,locj(1),i)

END DO
ff(n,k,i) = ff(n,k,i)/dfloat(10)
f(n,k,locj(1),i) = ff(n,k,i)

!
END DO

END DO
END DO 390

deallocate(ff)
END if

!
if (sndim(3,2)==1.and.dom bound(3,1) == 0) then

!
allocate(ff(3,indj(1):indj(2),indi(1):indi(2)))

!
DO n = 1,nvar

DO j = indj(1),indj(2)

165

DO i = indi(1),indi(2) 400

ff(n,j,i)=0.d0
!

DO r = −2,2,1
if (sndim(1,2)==2) ff(n,j,i) = ff(n,j,i)+f(n,lock(1)+1,j,i+r)+f(n,lock(1),j,i+r)
if (sndim(2,2)==2) ff(n,j,i) = ff(n,j,i)+f(n,lock(1)+1,j+r,i)+f(n,lock(1),j+r,i)

END DO
ff(n,j,i) = ff(n,j,i)/dfloat(10)
f(n,lock(1),j,i) = ff(n,j,i)

! 410

END DO
END DO

END DO
deallocate(ff)

END if
!
! B.C. at r = x2max
!=================
!

if (sndim(1,2) == 1) ii = 1 420

if (sndim(2,2) == 1) ii = 2
if (sndim(3,2) == 1) ii = 3

!
h1 = 1.d0/(12.d0*dx1)&

&*cc1(1,ii,indk(2),indj(2),indi(2))
!

if (sndim(1,2) == 1.and.dom bound(1,2) == 0) then
! DO n = 1,nvar

DO k = indk(1),indk(2)
DO j = indj(1),indj(2) 430

!
if (sndim(2,2) == 3) zpos = j
if (sndim(3,2) == 3) zpos = k

!
f(1,k,j,loci(2)) = f(1,k,j,loci(2)−1)
f(2,k,j,loci(2)) = ((−3.d0*f(2,k,j,loci(2)−4)+&

&16.d0*f(2,k,j,loci(2)−3)−36.d0*f(2,k,j,loci(2)−2)&
&+48.d0*f(2,k,j,loci(2)−1)))/(25.d0)

f(3,k,j,loci(2)) = ((−3.d0*f(3,k,j,loci(2)−4)+&
&16.d0*f(3,k,j,loci(2)−3)−36.d0*f(3,k,j,loci(2)−2)& 440

&+48.d0*f(3,k,j,loci(2)−1)))/(25.d0)
!

END DO
END DO

! END DO
END if

!
if (sndim(2,2) == 1.and.dom bound(2,2) == 0) then

! DO n = 1,nvar
DO k = indk(1),indk(2) 450

DO i = indi(1),indi(2)
!

166

if (sndim(1,2) == 3) zpos = i
if (sndim(3,2) == 3) zpos = k

!
f(1,k,locj(2),i) = f(1,k,locj(2)−1,i)
f(2,k,locj(2),i) = ((−3.d0*f(2,k,locj(2)−4,i)+&

&16.d0*f(2,k,locj(2)−3,i)−36.d0*f(2,k,locj(2)−2,i)&
&+48.d0*f(2,k,locj(2)−1,i)))/(25.d0)

f(3,k,locj(2),i) = ((−3.d0*f(3,k,locj(2)−4,i)+& 460

&16.d0*f(3,k,locj(2)−3,i)−36.d0*f(3,k,locj(2)−2,i)&
&+48.d0*f(3,k,locj(2)−1,i)))/(25.d0)

!
END DO

END DO
! END DO

END if
!

if (sndim(3,2) == 1.and.dom bound(3,2) == 0) then
! DO n = 1,nvar 470

DO j = indj(1),indj(2)
DO i = indi(1),indi(2)

!
if (sndim(1,2) == 3) zpos = i
if (sndim(2,2) == 3) zpos = j

!
f(1,lock(2),j,i) = f(1,lock(2)−1,j,i)
f(2,lock(2),j,i) = ((−3.d0*f(2,lock(2)−4,j,i)+&

&16.d0*f(2,lock(2)−3,j,i)−36.d0*f(2,lock(2)−2,j,i)&
&+48.d0*f(2,lock(2)−1,j,i)))/(25.d0) 480

f(3,lock(2),j,i) = ((−3.d0*f(3,lock(2)−4,j,i)+&
&16.d0*f(3,lock(2)−3,j,i)−36.d0*f(3,lock(2)−2,j,i)&
&+48.d0*f(3,lock(2)−1,j,i)))/(25.d0)

!
END DO

END DO
! END DO

END if
!
! 490

!
END SUBROUTINE bc

!
!==
!==
!

Subroutine per corr
!

USE vkvar
! 500

IMPLICIT NONE
!

INTEGER :: i,j,k,n
!

if (periodic(1).ne.0.and.dims(1)==1) then

167

do n = 1,nvar
do k = lock(1) − dom bound(3,1), lock(2) − dom bound(3,2)

do j = locj(1) − dom bound(2,1), locj(2) − dom bound(2,2)
!

f(n,k,j,loci(1)) = f(n,k,j,loci(2)−ghostlayer−2) 510

f(n,k,j,loci(1)+1) = f(n,k,j,loci(2)−ghostlayer−1)
f(n,k,j,loci(2)) = f(n,k,j,loci(1)+ghostlayer+2)
f(n,k,j,loci(2)−1) = f(n,k,j,loci(1)+ghostlayer+1)

!
end do

end do
end do

!
end if

! 520

if (periodic(2).ne.0.and.dims(2)==1) then
do n = 1,nvar

do k = lock(1) − dom bound(3,1), lock(2) − dom bound(3,2)
do i = loci(1) − dom bound(1,1), loci(2) − dom bound(1,2)

!
f(n,k,locj(1),i) = f(n,k,locj(2)−ghostlayer−2,i)
f(n,k,locj(1)+1,i) = f(n,k,locj(2)−ghostlayer−1,i)
f(n,k,locj(2),i) = f(n,k,locj(1)+ghostlayer+2,i)
f(n,k,locj(2)−1,i) = f(n,k,locj(1)+ghostlayer+1,i)

! 530

end do
end do

end do
!

end if
!

if (periodic(3).ne.0.and.dims(3)==1) then
do n = 1,nvar

do j = locj(1) − dom bound(2,1), locj(2) − dom bound(2,2)
do i = loci(1) − dom bound(1,1), loci(2) − dom bound(1,2) 540

!
f(n,lock(1),j,i) = f(n,lock(2)−ghostlayer−2,j,i)
f(n,lock(1)+1,j,i) = f(n,lock(2)−ghostlayer−1,j,i)
f(n,lock(2),j,i) = f(n,lock(1)+ghostlayer+2,j,i)
f(n,lock(2)−1,j,i) = f(n,lock(1)+ghostlayer+1,j,i)

!
end do

end do
end do

end if 550

!
End Subroutine per corr

!
!===
!===
!===
!

Subroutine perturb

168

!
USE vkvar 560

USE vkpar
USE vk in

!
IMPLICIT NONE

!
INTEGER :: i,j,k,n
INTEGER,dimension(2) :: indi,indj,indk
REAL*8 :: sp
sp = 1.d0

! 570

if (id==0) print *, ’Perturbing in Theta’
!

do i = 1,2
indi(i) = loci(i)−dom bound(1,i)
indj(i) = locj(i)−dom bound(2,i)
indk(i) = lock(i)−dom bound(3,i)

end do
!

if (wnum.gt.0.d0) sp = 0.d0
do n = 1,nvar 580

do k = indk(1),indk(2)
do j = indj(1),indj(2)

do i = indi(1),indi(2)
f(n,k,j,i) = f(n,k,j,i)*(1.d0+(1.d0−sp)*pert*(cos(wnum*f(5,k,j,i)))&

&+sp*pert*(0.01*cos(f(5,k,j,i))+cos(acos(−1.)−f(4,k,j,i)/x1max*acos(−1.))))
if (f(n,k,j,i).lt.1.d−20) f(n,k,j,i) = 1.d−20

end do
end do

end do
end do 590

call track error(t)
CALL vk communication(1,fsize)
CALL output(t,1000)

!
end Subroutine perturb

!
!===
!

END MODULE vk cf
600

Sample Input

nvar nstep dt
3 10000 0.0002d0
ikutta iord
5 2
H0 b eq1
0.1d0 1. 2.d0
rmin thetmin zmin

169

0.0001 0.0 0.0
rmax thetmax zmax
40. 0.0 25. 10

nr ntheta nz
64 64 64
St1 St2 St3
1.0 1.0 1.04
Pr Le1 Le2 Damk a1 a2 beta Ze bcval
1.0 1.0 1.0 1.90d0 .25d0 1.0 25.d0 40. 1.0
T0 TINF
1.0 1.0
Irestart thetapert wnum err ouput freq Contour out freq
3 0.01 0.0 100 25000 20

nproc1 nproc2 nproc3
0 0 0
tstar zstar
7.43 1.54

Notes:
thetamax: if 0, direction is taken to be periodic

Irestart: 0 − Initial conditions given in 30

initial conditions(nvar) in func def.f90
1 − restart
2 − restart with time=0
3 − time=0, Initial conditions=temp colsys.dat

therapert: Magnitude of perturbation (usually 0.01)

wnum: 0.0 − cos(r)
1.0 − cos(theta)
2.0 − cos(2theta) 40

3.0 − cos(3theta)
.
.
.

err output freq: Interval at which to print to screen

Contour out freq: Interval at which to write output

nproc: Number of processors assigned 50

to the respective direction.
If all are set to 0 then the optimal
combination is assigned.

170

References

[1] V. Nayagam and F. A. Williams. Rotating Spiral Edges in Von Karman Swirling Flows,
Physical Review Letters 84, 3 (2000).

[2] V. Nayagam and F. A. Williams. Pattern Formation in Diffusion Flames Embedded in
Von Karman Swirling Flows, NASA/CP 2001-21082 (2001).

[3] V. Nayagam and F. A. Williams. Pattern Formation in Diffusion flames Embedded in
Von Karman Swirling Flows, NASA/CR 2006-214057 (2006).

[4] M. H. Carpenter and C. A. Kennedy. Fourth-order 2N Storage Runge-Kutta Schemes,
NASA Technical Memorandum 109112 (1994).

[5] R. Vance, M. Miklavic, and I. S. Wichman. On the stability of one-dimensional diffu-
sion flames established between plane, parallel, porous walls, Combustion Theory and
Modelling 5,, 147 (2001).

[6] J. D. Buckmaster and G. S. S. Ludford, Theory of Laminar Flames (Cambridge Uni-
versity Press, 1982).

[7] P. J. Zandbergen and D. Dijkstra. Von Karman Swirling Flows, Annual Review of Fluid
Mechanics 19, 456 (1987).

[8] V. Nayagam and F. A. Williams. Diffusion Flame Extinction for a Spining Fuel Disk
in an Oxidizer Counterflow, Proceedings of the Combustion Institute 28, 2875 (2000).

[9] M. L. Shay and P. D. Ronney. Nonpremixed Edge Flames in Spatially Varying Straining
Flows, Combustion and Flame 112, 117 (1998).

[10] J. D. Buckmaster. Edge-Flames and their Stability, Combustion Science and Technology
115, 1-3, 41 (1996).

[11] J. D. Buckmaster. Edge-flames, Progress in Energy and Combustion Science 28, 435
(2002).

[12] G. L. Pellet, K. M. Isaac, W. M. J. Humphreys, L. R. Gartrell, W. L. Roberts, C. L.
Dancey, and G. B. Northam. Velocity and Thermal Structure, and Strain-Induced
Extinction of 14 to 100% Hydrogen-Air Counterflow Diffusion Flames, Combustion and
Flame 112, 575 (2002).

171

[13] C. E. Frouzakis, A. G. Tomboulides, J. Lee, and K. Boulouchos. From Diffusion to Pre-
mixed Flames in an H2/Air Opposed-Jet Burner: The Role of Edge Flames, Combustion
and Flame 130, 171 (2002).

[14] Z. Lu and S. Ghoshal. Flame Holes and Flame Disks on the Surface of a Diffusion
Flame, Journal of Fluid Mechanics 513, 287 (2004).

[15] J. D. Buckmaster, A. Nachman, and S. Taliaferro. The Fast-Time Instability of Diffusion
Flames, Physica D: Nonlinear Phenomena 9, 3, 408 (1983).

[16] J. S. Kim. Linear Analysis of Diffusional-Thermal Instability in Diffusion Flames with
Lewis Numbers Close to Unity, Combustion Theory and Modelling 1, 13 (1997).

[17] S. Cheatham and M. Matalon. A General Asymptotic Theory of Diffusion Flames with
Application to Cellular Instabilities, Journal of Fluid Mechanics 414, 105 (2000).

[18] S. Kukuck and M. Matalon. The Onset of Oscillations in Diffusion Flames, Combustion
Theory and Modelling 5, 217 (2001).

[19] J. D. Buckmaster and T. L. Jackson. Holes in Flames, Flame Isolas, and Flame Edges,
Proceedings of the Combustion Institute 28, 1957 (2000).

[20] M. Short and Y. Liu. Edge-flame Structure and Oscillations for Unit Lewis Numbers
in a Non-premixed Counterflow, Combustion Theory and Modelling 8, 425 (2004).

[21] B. S. Margolis. Bifurcation Phenomena in Burner-Stabilized Premixd Flames, Combus-
tion Science and Technology 22, 143 (1979).

[22] J. D. Buckmaster. Stability of the Porous Plug Burner Flame, SIAM Journal on Applied
Matematics 43, 6, 1335 (1983).

[23] R. Chen, B. G. Mitchell, and P. D. Ronney. Diffusive-Thermal Instability and Flame
Extinction in Nonpremixed Combustion, Twenty-fourth Eighteenth Symposium (Inter-
national) on Combustion pp. 213–221 (1992).

[24] S. P. Burke and T. E. W. Schumann. Diffusion Flames, 76th Meeting of the American
Chemical Society 20, 10, 998 (1928).

[25] M. Matalon. The Effect of Thermal Expansion on Flame Dynamics, 5th US Combustion
Meeting (2007).

[26] M. Matalon. Intrinsic Flame Instabilities in Premixed and Nonpremixed Combustion,
Annual Review of Fluid Mechanics (2007).

[27] M. Matalon and V. Kurdyumov. Effect of Thermal Expansion on Edge-Flames, 46th
AIAA Aerospace Sciences Meeting and Exhibit (2008).

[28] M. Smooke, C. McEnally, L. Pfefferle, R. Hall, and M. Colket. Computational and Ex-
perimental Study of Soot Formation in a Coflow, Laminar Diffusion Flame, Combustion
and Flame 117, Issues 1-2, 117 (1999).

172

[29] G. Amantini and A. G. Jonathan H. Frank, Mitchell D. Smooke. Computational and
Experimental Study of Standing Methane Edge Flames in the Two-Dimensional Ax-
isymmetric Counterflow Geometry, Combustion and Flame 147, 133 (2006).

[30] U. Asher, J. Christiansen, and R. D. Russel. Collocation Software for Boundary Value
ODEs, ACM Transactions on Math Software 7, 223 (1981).

[31] J. H. Williamson. Low Storage Runge-Kutta Schemes, Journal of Computational
Physics (1980).

[32] M. J. Quinn, Parallel Programming in C with MPI and OpenMP (McGraw-Hill, 2004).

[33] A. Gray, Modern Differential Geometry of Curves and Surfaces with Mathematica (CRC
Press, Boca Raton, FL, 1997).

[34] R. W. Bilger. Turbulent Diffusion Flames, Annual Review of Fluid Mechanics 2, 101
(1989).

[35] R. W. Bilger. The Structure of Diffusion Flames, Combustion Science and Technology
13, 155 (1976).

[36] K. K. Kuo, Principles of Combustion (John Wiley and Sons, 1986).

[37] N. Peters, Turbulent Combustion (Cambridge University Press, 2000).

[38] V. Favier and L. Vervisch. Edge Flames and Partially Premixed Combustion in Diffusion
Flame Quenching, Combustion and Flame 125, 788 (2001).

[39] N. Chakraborty and E. Mastorakos. Numerical Investigation of Edge Flame Propagation
Characteristics in Turbulent Mixing Layers, Physics of Fluids 18, 105103 (2006).

173

Curriculum Vitae
Kishwar Hossain

550 W Stocker St
Glendale, CA 91202
773-787-672

Education

5/2003 - Present
University of Illinois at Urbana Champaign, Department of Aerospace Engineer-
ing, Urbana, IL
§§ Doctorate
§§ GPA: 3.7, Minor: Computational Science and Engineering

5/2000 - 5/2003
University of Illinois - Urbana Champaign, Department of Aerospace Engineer-
ing, Urbana, IL
§§ Master’s Degree
§§ GPA: 3.6

8/1997 - 5/2000
Lafayette College, Easton, PA
§§ Bachelor’s Degree
§§ GPA: 3.5, Minor: Mathematics
§§ Graduated with Honors, Excel Scholar

Experience

Research Assistant
10/2007 – Present
Computational Science and Engineering, UIUC, Urbana, IL
§§ Member of the Combustion and Energetic Materials Group.
§§ Conducting a study on burn rates for heterogeneous solid-propellant packs using a 3-
step kinetic model to evaluate the robustness of the model.

Researcher
5/2004 – Present
UIUC, Department of Aerospace Engineering, Urbana, IL
§§ Development of numerical algorithms to study flame dynamics.
§§ Conducting a study on the stability, and extinction characteristics of diffusion flames
supported by a spinning methane burner. It is found that non-uniform flames, namely flame
holes and spirals appear at near extinction conditions. These flames are simulated using a

174

three-dimensional parallel combustion code in cylindrical coordinates.
§§ Developed FORTRAN based computational code for solving three-dimensional com-
bustion problems.
§§ Adapted the above code to run on a cluster of parallel computers using the MPI pro-
tocol.

Analyst – Graduate Assistant
8/2003 - 8/2006
Champaign Simulation Center, Caterpillar, Champaign, IL
§§ Structural analysis of earth moving vehicles using finite element methods. Generated
finite element meshes using software such as IDEAS and Hypermesh and conducted analysis
using NASTRAN and ABAQUS.
§§ Conducted modal analysis to identify critical frequencies in newly developed machines.

Analyst - CAT PRACTICUM Internship
5/2006 - 8/2006
CATERPILLAR INC., Champaign, IL
§§ Performed analysis for the Structural/Optimization group at the Champaign Simula-
tion Center.
§§ Conducted non-linear structural analysis.
§§ Conducted fatigue analysis.
§§ Conducted linear static analysis using finite element models for different components of
Caterpillar machines for validation of simulations with test results and for identifying weak
spots in new designs.
§§ Conducted non-linear static analysis to identify structural weaknesses in designs during
the development of new machines.

Analyst - CAT PRACTICUM Internship
5/2005 - 8/2005
CATERPILLAR INC., Champaign, IL
§§ Performed analysis for the Structural/Optimization group at the center.
§§ Conducted non-linear structural analysis.
§§ Conducted modal analysis.

Research Assistant
8/2000 - 5/2003
UIUC, Department of Aerospace Engineering, Urbana, IL
§§ Member of the Smart Icing Systems group, SIS, a multidisciplinary group dedicated to
the development of a semi-autonomous icing protection system for small aircraft.
§§ Developed numerical algorithms to enhance the envelope protection systems of aircrafts
impaired under icing conditions.
§§ Developed C code to implement the algorithms in a flight simulator.
§§ Developed a neural network in MATLAB to characterize icing effects as a function of
aerodynamic coefficients.

175

Teaching Assistant
8/2000 - 12/2000
UIUC, Department of Aerospace Engineering, Urbana, IL
§§ Instructor for AAE 260, the undergraduate fluid dynamics lab course.

Instructor, Illinois Aerospace Institute Summer Camp
Summer 2001, Summer 2002, Summer 2003
UIUC, Department of Aerospace Engineering, Urbana, IL
§§ Instructor for aerodynamics sessions.
§§ Instructor for glider building sessions.

Research Assistant
8/1997 - 5/2000
Lafayette College, Easton, PA
§§ Conducted research on the behavior of viscoelastic materials under tensile loads.
§§ Developed a diagnostic setup to study thermoforming using thermocouples in conjunc-
tion with the Labview diagnostic interface.
§§ Designed and manufactured a pseudo fluidized bed for coating prepregs with micropar-
ticles.

Publications

§§ Hossain K., Jackson T., Buckmaster J., Numerical Simulations of Flame Patterns Sup-
ported by a Spinning Methane Burner, Submitted to the 32nd International Symposium on
Combustion, 2008.

§§ Hossain K., Jackson T., Buckmaster J., Three-dimensional Simulations of Flames Sup-
ported by a Spinning Porous Plug Burner, AIAA 2008-1047, 2008.

§§ Wang, X., Hossain K., Jackson T., The Three-dimensional Numerical Simulation of
Aluminized Composite Solid Propellant Combustion, Combustion Theory and Modelling,
11, 4, 2007.

§§ Hossain K., Sharma V., Bragg M., Voulgaris P., Envelope Protection and Control
Adaptation in Icing Encounters, AIAA 2003-0025, 2003.

§§ Merret J., Hossain K., Bragg M., Envelope Protection and Atmospheric Disturbances
in Icing Encounter, AIAA 2002-0814, 2002.

§§ Hummel, S. Hossain K., Hayes G., Biaxial Stress Relaxation of High Impact Polystyrene
(HIPS) Above the Glass Transition Temperature, Polymer Engineering and Science, 41, 3,
pg 566, 2001.

Activities

176

§§ Member of the Graduate Student Advisory Committee, Department of Aerospace En-
gineering, UIUC, 2006-2007

177

