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Abstract

Non-uniform methane diffusion flames, formed from a porous plug burner spinning in quiescent air, are
investigated numerically in a three-dimensional context. Flames are simulated for Damköhler numbers on
the upper branch of the S-shaped response curve close to the extinction point. Multi-dimensional instabil-
ities appear in the form of holes and spirals at these near extinction Damköhler numbers, as observed in
experimental studies of flames sustained by a rotating porous burner [V. Nayagam, F.A. Williams, Pattern
Formation in Diffusion Flames Embedded in Von Karman Swirling Flows, NASA/CP 2001-21082; V. Naya-
gam, F.A. Williams, Pattern Formation in Diffusion Flames Embedded in Von Karman Swirling Flows,
NASA/CR 2006-214057]. Simulation results from the constant density and constant viscosity model sug-
gest that the non-uniform flames are a result of thermo-diffusional instabilities and are a function of the
Damköhler number. The simulated flame holes have stationary edges while the single and double spirals
have edges that rotate about the axis of the burner. It is found that boundary conditions such as the mix-
ture strength and the injection velocity affect the range of Damköhler numbers within which the system is
unstable.
� 2009 The Combustion Institute. Published by Elsevier Inc. All rights reserved.
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1. Introduction

The evolution of non-uniform flames is typi-
cally a manifestation of the intrinsic instabilities
of the system. These instabilities lead to dynamics
that are unique and offer insight into the condi-
tions necessary for the sustainability of the flame.
An understanding of these instabilities can also be
of importance to turbulence modeling. The flame
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supported by a rotating porous plug burner offers
a suitable platform for the study of such an insta-
bility. Here the non-uniformity appears in the
form of flame holes and spirals. The spirals are
particularly interesting because they are distinct
flames that rotate about the axis of the burner,
and thus simultaneously support an ignition front
and a trailing extinction front. This study aims to
identify the conditions that render the diffusion
flame formed on a rotating porous plug burner
unstable, and to analyze the features of the result-
ing non-uniform flame such as the dynamic edges,
the characteristics of which may be of some
importance to the study of turbulent flames. We
ute. Published by Elsevier Inc. All rights reserved.
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begin our discussion with a more detailed look at
the configuration we are considering and a review
of other studies that provide information on the
onset of instabilities in diffusion flames.

Rotation of the porous plug causes a flow of
the ambient air toward the burner, while there is
a steady flow of fuel from the burner exit. Conse-
quently, the fuel and air mix at a finite distance
above the burner surface and a diffusion flame is
formed, as sketched in Fig. 1. Here, the injection
velocity of the fuel is w0 and the angular velocity
of the burner is b0. If b0 > 0 then the burner
rotates counterclockwise. In this study, the fuel
is taken to be methane and the oxidizer is air.
The viscosity, thermal conductivity, and the spe-
cific heat at constant pressure are taken to be con-
stants. The density is also taken to be constant,
uncoupling the mass and momentum equations
from the energy and species equations. The flow
is solved, independently of the combustion equa-
tions, using the similarity solution for the Von
Karman swirling flow. For the combustion equa-
tions, a one-step global irreversible reaction is
considered and the reaction rate is taken to be
of the Arrhenius type. The system of unsteady,
three-dimensional equations is then solved numer-
ically using the velocity profiles as inputs.

Experimental studies using the rotating burner
configuration show the evolution of non-uniform
flames with variations in the rotational speeds of
the burner [1,2]. At low rotational speeds a steady
planar flame, independent of r and h, is observed.
As the rotational speed is increased pulsating flame
holes, single-armed spirals and eventually multi-
armed spirals are observed. A related asymptotic
study, by Nayagam and Williams [3], on inflamma-
bility limits of a stagnation point flow impinging on
a spinning fuel disk, shows that the inflammability
boundaries for the one-dimensional system are a
function of the strain-rate parameter.

The influence of the strain-rate on the stability
of diffusion flames is also evidenced in a study of
Fig. 1. Sketch of a diffusion flame supported by a
rotating burner.
flames formed between opposed slot jet burners
[4] where there exists a threshold for the local
strain-rate value below which the spatially uni-
form diffusion flame is replaced by a stable edge-
flame configuration. These destabilizing effects of
the strain-rate on diffusion flames are typically a
transitional state between the fast time stable,
and unstable branches of the S-shaped response
curve which depicts the maximum temperature
as a function of a Damköhler number, which is
typically a function of the strain-rate. In experi-
mental studies of non-premixed flames oscillations
and cellular flames are generally observed at near
extinction Damköhler numbers [5,6]. Theoretical
studies by Cheatham and Matalon [7], and by
Kukuck and Matalon [8] also reverberate this
notion.

The experimental study of flame holes by Pellet
et al. [9] shows that increases in the flow velocities
cause a disk flame to ‘‘rupture” from the center
outward. A reduction of the mass flow rate fol-
lowing the ‘‘rupture” leads to a shrinking and
shifting of the ring until the disk flame is restored.
A subsequent two-dimensional numerical study of
Frouzakis et al. [10], reproduces the qualitative
results of Pellet et al., and shows that an increase
in the Reynolds number of the flow leads to the
local extinction of the flat diffusion flame and
the formation of an edge-flame. In another two-
dimensional numerical study, Lu and Ghoshal
[11] show that the dynamic behavior of a hole is
dependent on the strain-rate and the hole radius;
for every strain-rate there is a critical hole radius
that is a bifurcation point and separates the
expanding and shrinking behavior. Buckmaster
and Jackson [12], in their investigation of the pro-
pensity of holes to close in a zero velocity field,
identify a detachment Damköhler number, the
maximum Damköhler number for which a hole
will expand.

Although the onset of instability is typically a
function of the Damköhler number, there are
other parameters that affect it as well. Theoretical
studies by Kukuck and Matalon [8], and Short
and Lui [13] show that boundary conditions,
namely the mixture strength and the fuel supply
temperature, have a significant effect on the range
of Damköhler numbers within which the system
becomes unstable. Heat losses to the channel walls
also have an effect on the stability of the system.
The effect of heat loss is considered in detail in
the context of a premixed flame anchored to a
porous plug burner by Margolis [14] and by Buck-
master [15]. These studies show that heat loss to
the burner has a stabilizing effect on the left stabil-
ity boundary of the premixed flame. In terms of
the right stability boundary, increases in the heat
loss lead to a destabilizing shift till a threshold is
reached, beyond which the burner is stabilizing.
For high enough values of the activation energy,
a Lewis number stability band does not exist.
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The focus of this paper is to summarize results
of a three-dimensional numerical investigation of
the near extinction behavior of flames supported
by a spinning methane burner. The range of Dam-
köhler numbers within which non-uniform flames,
qualitatively similar to those observed by Naya-
gam and Williams [1], can be sustained is identi-
fied. Following is a detailed account of the
formulation in and a discussion of the numerical
method in Section 2, and a discussion of the
results is given in Section 3.
2. Non-dimensional equations and solution meth-
odology

For non-dimensionalization, the lengths are
scaled by

ffiffiffiffiffiffiffiffiffi
m=b0

p
, time by the reciprocal of b0, tem-

perature by T1, and the species by Yf0, the mass
fraction of the fuel at the burner exit. The similar-
ity variables for the velocities are

F ¼ u=ðb0rÞ; G ¼ v=ðb0rÞ; H ¼ w=
ffiffiffiffiffiffiffi
b0m

p
; ð1Þ

where u, v and w are the radial, tangential and ax-
ial velocities, respectively, and F, G and H are
functions of z. The resulting non-dimensional
equations are

H 0 ¼ �2F ; F 00 ¼ F 2 þ F 0H � G2;

G00 ¼ 2FGþ HG0: ð2Þ

The appropriate boundary conditions are

F ð0Þ ¼ 0; Gð0Þ ¼ 1; Hð0Þ ¼ H 0;

F ð1Þ ¼ 0; Gð1Þ ¼ 0: ð3Þ

The non-dimensional unsteady energy and species
equations are given by

L½T ; Y i� �M½T ; LeiY i� ¼ X½b;�ai�; ð4Þ
where

L ¼ o=ot þ rF o=or þ Go=ohþ Ho=oz;

M ¼ r�1o=or þ o2=or2 þ r�2o2=oh2 þ o2=oz2:

Here, T is the temperature, Yi the species mass

fraction, Lei = qCpDi/k, is the Lewis number for

species i, b = QYf0/CpT0, the heat release parame-

ter, ai the ratio of stoichiometric mass fractions,

X ¼ DDY oY f expfZeð1� T �=T Þg, the reaction

rate, D ¼ Bb�1
0 q�1Y f0, the Damköhler number,

Ze = E/(RuT0T *) the Zeldovich number,

D ¼ Ze3T �=z�2, a scaling factor, and, T * and z*

the Burke–Schumann flame temperature and
flame location, respectively, for the baseline
parameters listed in Section 3.1. The Prandtl num-
ber, Pr = mqCp/k, is set to 1.0. The boundary con-
ditions are
z ¼ 0 : T 0 ¼ T s; Y fz ¼ H 0LefðY f � 1Þ;
Y oz ¼ H 0LeoY o;

z ¼ 1 : T1 ¼ 1; Y f ¼ 0; Y o ¼ /�1;

r ¼ d : T ¼ T avg; Y i ¼ Y i;avg;

r ¼ 1 : T r ¼ 0; Y ir ¼ 0;

and periodic in h

T hjh¼0 ¼ T hjh¼2p; Y ih jh¼0 ¼ Y ih jh¼2p:

Here, / is the mixture strength defined as the ratio
of the fuel mass fraction at the burner surface to
the oxidizer mass fraction at infinity. This defini-
tion of the mixture strength is not normalized by
the stoichiometric coefficients and is thus different
from the one used by Kukuck and Matalon [8]. At
the burner surface the non-dimensional tempera-
ture is set to a constant, Ts, and at z =1 the tem-
perature is set to the ambient temperature, unity,
while the fuel mass fraction is set to zero. Neu-
mann boundary conditions are applied at r =1,
while as r ? 0 dirichlet conditions derived from
averages of the field variables from adjacent hs
are used, that is,

T avg ¼
Z hþa

h�a
T ðd; h; zÞdh

� ��
n ð5Þ

Y iavg ¼
Z hþa

h�a
Y iðd; h; zÞdh

� ��
n ð6Þ

with d� 1, a = p/8 and n = (number of grid
points in r)/8. The temperature and species are ta-
ken to be periodic in h. For the current study the
fuel is taken to be methane, and the oxidizer is air;
thus, Lef = 1.0, Leo = 1.0, af = 0.25 and ao = 1.0.
The mass fraction of air at infinity, Yo1 is taken
to be 0.2. The parameters of study are D, Ts,
H0, and /. b is adjusted to fix the Burke–Schu-
mann flame temperature while Ze is kept con-
stant. The one-dimensional similarity equations
of the Von Karman spinning disk flow, given by
Eq. (2), are solved using the COLSYS package
[16]. The energy and species equations (4) are
solved using a fourth-order centered finite differ-
ence scheme in space and a 2N-storage, five-stage,
fourth-order Runge–Kutta scheme (5, 4) RK, in
time [17]. The computations are performed on
parallel processors using the MPI protocol. The
simulation results are obtained using a 64 cubed
grid which proved to be sufficient in a convergence
study. The simulations commence at large Dam-
köhler numbers where the fast chemistry limit is
valid, and so the Burke–Schumann flame sheet
solution is used as the initial condition. At these
large Damköhler numbers a planar flame sheet
forms. Radial and angular perturbations are
introduced once steady-state is reached for a given
Damköhler number. If the perturbations do not
result in sustainable instabilities the simulations
are restarted at a lower Damköhler number using
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the steady-state solution from the previous Dam-
köhler number as the initial condition. This pro-
cess is repeated till the non-uniform flames
appear.
Fig. 2. Non-dimensional velocities.

Fig. 3. S-shaped response curve.
3. Results

3.1. The Burke–Schumann flame sheet

The Burke–Schumann limit is important to
consider in order to gain a fundamental under-
standing of the diffusion flame, and to establish
initial conditions for numerical solutions. This
limit arises as D ?1 resulting in an infinite reac-
tion rate that can be balanced by taking the flame
sheet to be very thin such that Yf Y0 ? 0. This
thin flat flame sheet forms at a distance z* from
the burner surface and separates the fuel and the
oxidizer. At this limit the combustion field is
expected to be a function of z and t only and
the temperature and species profiles are given by

0 6 z < z� : T ¼ Zþ; Y o ¼ 0;

Y f ¼ b�1afðZ� � ZþÞ;
and

z� < z 6 z1 : T ¼ Z�; Y f ¼ 0;

Y o ¼ b�1aoðZþ � Z�Þ;
ð7Þ

where the Schvab–Zeldovich variables are

Zþ ¼ T þ ba�1
f Y f and Z� ¼ T þ ba�1

o Y o ð8Þ
and the matching condition

Zþðz�Þ ¼ Z�ðz�Þ ð9Þ
is used to determine z*. The steady-state solutions
for Z+ and Z� are obtained using COLSYS. For
H0 = 0.1, Ts = 1.0, / = 2.0, b = 25.0 and Ze = 40,
the baseline parameters for this study denoted as
Case 1, the Burke–Schumann flame temperature
is T * = 7.43, and the flame location is z* = 1.54.
These values of the flame temperature and flame
location are used in Section 2 in the scaling factor
for the Damköhler number.

3.2. Three-dimensional simulations

The stability of the three-dimensional spinning
burner configuration is investigated using small
pure mode perturbations. It is found that at
appropriate Damköhler numbers these perturba-
tions result in non-uniform flame patterns such
as holes and spirals. This phenomenon is first
investigated for parameter values listed in the pre-
vious section for Case 1. Figs. 2 and 3 show the
velocity profiles and the S-shaped response curve,
respectively, for this set of parameters. The extinc-
tion point, DE, is approximately 1.48 as seen from
Fig. 3. D* = 1.96 represents the highest Damköhler
number at which sustainable non-uniform flames
appear. As seen from Fig. 3 the range of Damköh-
ler numbers within which these non-uniform
flames appear is small. However, this range can
be further divided into smaller intervals where dif-
ferent modes are viable. For example, for the set
of parameters listed above, the flame hole first
appears at D = 1.96, the single spirals at
D = 1.91 while the double spiral appears first at
D = 1.85. It is expected that as the Damköhler
number is lowered the ranges within which higher
modes are sustained can be determined. However,
for this paper the discussion is limited up to dou-
ble spirals, primarily due to the fact that for the
higher modes the ranges become smaller and so
it is difficult to identify distinct regions corre-
sponding to each mode. The progression of the
flames from the flame hole to the single-armed
and then the multi-armed spirals with decreasing
Damköhler number is reminiscent of the observa-
tions of Nayagam and Williams [2] where the
flames transition from flame holes to spirals with
increasing angular velocity. It should be noted
that in the current formulation the Damköhler



Fig. 6. Temperature contour in the rz plane of a flame
hole for Case 1, D = 1.96.
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number is inversely proportional to the angular
velocity. Thus the trends observed in the simulations
are similar to those found in the experimental
studies.

3.3. Flame hole

Figure 4 shows the temperature contours in the
xy-plane of a flame hole at D = 1.96 at the stoichi-
ometric height. Unlike the pulsating flame holes
observed by Nayagam and Williams [2] the simu-
lated flame hole is stable with stationary edges.
Here, a central cold region is surrounded by an
axisymmetric, annular flame sheet. A region of
high temperature appears immediately adjacent
to the boundary of the flame hole and then the
temperature gradually decreases and oscillates
along the radius as shown in Fig. 5. The geometry
of the flame hole is better illustrated in the temper-
ature contour in the rz plane given in Fig. 6. The
edge of the flame is at a radial location of approx-
imately r = 13.4. There is a region of high temper-
ature adjacent to the flame edge, trailed by a lower
Fig. 4. Flame hole for Case 1, D = 1.96.

Fig. 5. Radial temperature profile at h = 0 rad.
temperature flame till the outer radial boundary.
Additional information about the flame is
obtained from the cross-scalar dissipation con-
tours shown in Fig. 7, defined as

vc ¼ rY f � rY o: ð10Þ
The cross-scalar dissipation rate as defined here is
negative for diffusion flames and positive for pre-
mixed flames [18,19]. As seen from this figure
there is some premixing near the location of the
edge of the flame hole. The high temperatures in
the triangular region adjacent to the flame hole
could be attributed to this premixing. This figure
also indicates that the tail of the annular flame
is purely diffusional.

The radial oscillations in the trailing diffusion
flame beyond the hole region are visible in the rz
contours as well. These oscillations can be
explained by considering small perturbations in
the large z field. As z ?1 the angular and radial
velocities become negligible while the axial veloc-
ity asymptotes to H1. Here, the solution of the
homogeneous heat equation is given by

T ¼ exp �1=2 H1 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H 2
1 þ 4l2

q� �
z

� �
J 0ðlrÞ:

ð11Þ
Fig. 7. Cross-scalar dissipation contour in the rz plane
of a flame hole for Case 1, D = 1.96.
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It is found that the wavelength of the radial oscil-
lations shown in Fig. 5 correspond to l � 0.14
which implies

T ¼ expðH1zÞJ 0ðlrÞ: ð12Þ
Fig. 8. Single spiral for Case 1, D = 1.91.
3.4. Effect of Damköhler number on flame hole
radius

The flame hole is the first non-uniform flame
observed as the value of the Damköhler number
nears the extinction value, DE. The flame hole
forms at a Damköhler number of 1.96 while a sin-
gle spiral forms at D = 1.9. It is found that at
Damköhler numbers between these two values
the flame hole expands with decreasing Damköh-
ler number. Flame holes are simulated for
1.940 6 D 6 1.960 and the flame hole radii,
defined as the distance from the axis to the point
where the temperature rises above 5 in the stoichi-
ometric plane, are tabulated in Table 1. As seen
from this table there is a significant increase in
the flame hole radius within the range of Dam-
köhler numbers considered. Another point of note
is that the radii of the flame holes are large and so
the concept of edge speeds is probably appropri-
ate. Although the flame holes have stationary
edges, it should be noted that these edges are sta-
tionary relative to a non-zero radial velocity that
is a function of the radius at the stoichiometric
height. Thus, an expansion of the flame hole sug-
gests an increase in the edge speed with decreasing
Damköhler number. The temperature contours in
the rz plane suggest that the tail of the flame is
purely diffusional and from Table 1 it is seen that
the temperatures at r = 80 are generally close to
the flame sheet temperatures.

3.5. Single spiral

Figure 8 shows the temperature contours for a
single spiral for D = 1.91. The spiral rotates as a
rigid body at a rate of �0.14 rad/time, while the
burner rotates at b0 = 1 rad/time and at the stoi-
chiometric height the angular velocity is
b = 0.45 rad/time. This high relative angular
velocity is believed to be one of the main factors
contributing to the differences in the characteris-
tics of the leading edge as compared to the trailing
one. As seen from Fig. 8 the temperature gradient
Table 1
Damköhler number and flame hole radii

D Hole radius Temp. (r = 80) 1-D flame temp.

1.960 13.37 5.54 5.857
1.955 20.35 5.61 5.857
1.950 22.73 5.40 5.857
1.945 31.24 5.87 5.857
1.940 34.97 5.76 5.848
is steep at the leading edge while there is a more
gradual variation at the tail. This trend is similar
to the one seen in the case of the flame hole where
the stationary ‘‘leading edge” displays a high tem-
perature gradient. Another point of note are the
wiggles that are present at the leading edge of
the spiral. These oscillations arise due to difficul-
ties in fully resolving the dynamic edge of the
flame. It is found that increasing the grid density
reduces the prominence of these oscillations, how-
ever, due to time constraints, the finer grid is not
used.

The shape of the spiral is affected by the veloc-
ity field as well. In the rh plane the temperature
profile can be described as a wave that is advected
in h. The line connecting the peak temperatures of
these waves at each r location is at an angle that
can be approximated by the resultant of the radial
and angular velocities. This is demonstrated in
Fig. 9 where the velocity field is superimposed
on the temperature contours. As seen here the
velocity vectors are almost tangent to the temper-
Fig. 9. Single spiral contours and relative velocity
vectors for Case 1, D = 1.91. contour values: 4, 6, 8.



Fig. 10. Single spiral observed in the experiments of
Nayagam and Williams (printed with permission).

Fig. 11. Double spiral for Case 1, D = 1.85.

Fig. 12. Species contours in the rz plane of a double
spiral for Case 1, D = 1.85.
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ature contours. It is also found that as the Dam-
köhler number is reduced, there is no discernable
effect on either the speed or the shape of the spiral.
This indicates that, although the Damköhler num-
ber is responsible for triggering the instability, the
dynamics and the geometry of the single spiral are
primarily functions of the velocity field as repre-
sented by the similarity variables. Another point
of note is that the tip of the flame is anchored to
the axis of the burner and there is no discernable
meandering.

The single spirals simulated in this study are
qualitatively similar to the one observed in the
experiments. A snapshot of one such a spiral is
shown in Fig. 10 (obtained in a private communi-
cation with Vedha Nayagam and printed with per-
mission). This spiral rotates clockwise and the
temperature gradients at the leading edge are stee-
per than those in the trailing one. One primary
difference between the experimental results and
the simulated ones is the absence of tip meander-
ing in the simulated spirals. This difference could
be attributed to hydrodynamics effects which are
ignored in the current study. However, the quali-
tative similarities between the experimental and
numerical spirals suggest that the inception of
these non-uniform flames is a result of thermo-dif-
fusional instabilities although their propagation
may be affected by changes in the flow field.

3.6. Double spiral

The double spiral shown in Fig. 11 is for
D = 1.85 and rotates at 0.08 rad/time. In contrast
to the single spiral, the double spiral rotates in the
same direction as the burner but slower, and the
curvature of the leading edge is concave. How-
ever, as in the case of the single spiral, the leading
edge of the flame relative to the flow, is the one
with the steeper temperature gradients. The tem-
perature profile of the double spiral in the rh plane
can be likened to a double wave that is advected in
h, but there does not seem to be a direct correla-
tion between the temperature contours and the
velocity field. It should be noted that each of the
arms of the double spiral are not independent
entities like the single spiral. The interaction



Table 2
Effect of parameters of study on D*

Case H0 / Ts DE D* DE/D*

1 0.10 2.0 1.0 1.48 1.96 0.76
2 0.10 2.0 1.4 1.46 1.95 0.75
3 0.10 5.0 1.0 1.78 1.87 0.95
4 0.05 5.0 1.0 5.25 6.32 0.83
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between the tip of flames is depicted in the temper-
ature contours shown in Fig. 11. Such interaction
is also present in the species contours in the zh
plane as shown in Fig. 12a and b. Thus, along
with the Damköhler number and the velocity pro-
file, interactions between the flames also affect the
shape and dynamics of these flames.

3.7. Effect of parameters of study on the stability of
the system

In the previous sections it has been shown that
the Damköhler number is the crucial parameter
affecting the stability of the system. However, other
factors such as the boundary conditions are also
expected to have an effect, especially in terms of
the range of Damköhler numbers within which
non-uniform flames can be sustained. This is dem-
onstrated in Table 2 where the extinction Damköh-
ler numbers are reported for four different
parameter combinations. Here the heat release
parameter is adjusted to fix the Burke–Schumann
flame temperature. These values suggest that the
injection velocity and the mixture strength have a
considerable effect on the stability of the system
while the effect of the temperature at the burner exit
is small in comparison. Increasing the mixture
strength leads to a shrinkage of the range whereas
an increase in the injection velocity leads to an
expansion. The trend in terms of the mixture
strength is opposite to that observed by Kukuck
and Matalon [8] for planar oscillations in diffusion
flames. In the case of the spinning burner, an
increase in the mixture strength leads to a shifting
of the height of stoichiometry away from the burner
surface to a region where the radial and angular
velocities are lower in magnitude since the velocity
profile remains unchanged. This reduction in the
velocities in the vicinity of the flame sheet may have
a stabilizing effect and so the Damköhler number
range for instability is significantly reduced. An
increase in the injection velocity, on the other hand,
results in both a shift in the stoichiometric height
and velocity profile. This dual change may be the
cause of the expansion of the range.
4. Conclusion and future work

In this paper, a simple model is utilized to gain
some insights into the stability of diffusion flames
supported by a spinning porous plug methane bur-
ner. The evolution of the flame holes and spirals
indicate that diffusion flames supported by the
rotating porous plug burner become unstable at
near extinction Damköhler numbers on the upper
branch of the S-shaped response curve. It is shown
that these multi-dimensional instabilities are
thermo-diffusional in nature. The flames have
three-dimensional characteristics and the spirals
are dynamic in nature. They rotate about the axis
of the burner and the single-armed spiral rotates
clockwise while the double-armed spiral rotates
counter clockwise. The primary factors affecting
the shape and dynamics of the spirals are identified
as the velocity field and the interaction between
spiral flamelets. It is also found that the mixture
strength and the injection velocity have a significant
effect on the range of Damköhler numbers within
which the system is prone to instability.
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